A Young's modulus graphene nanoribbons

barana
Messages
17
Reaction score
0
Young’s modulus is given as the second derivative of the total energy with respect to the strain divided
by the equilibrium volume.
Can help me for the calculate equilibrium volume and young's modulus?
 
Physics news on Phys.org
Do you have the expression for energy as a function of strain figured out already?
 
Matlab code for calculate band structure graphene nanoribbons under strain is below:

clear;
clc;
close all;

NU=12; % Number of atoms in unit cell
Nbnd=4*NU; % number of bands
q=0.03;
w=0.41;
aa=2.232*(1+q);
a=3.866*(1+q);

X(1)=1.9330*(1+q);
Y(1)=0;

xswitch = 0;

for ixy=2:NU
if mod(ixy,2)==1
Y(ixy)=Y(ixy-1)+aa;
else
Y(ixy)=Y(ixy-1)+aa*sind(30);

X(ixy) = xswitch;

if (ixy+1)<=NU
X(ixy+1)=xswitch;
end

if xswitch == 0
xswitch =aa*cosd(30);
else
xswitch = 0;
end
end
end

for iz=1:NU
if mod(iz,2)==1
Z(iz)=0.46152;
else
Z(iz)=0;
end

end

sho=0;
for is=[0,-1,1]
for ks=1:NU
sho=sho+1;
XT(sho)=X(ks)+is*a;
YT(sho)=Y(ks);
ZT(sho)=Z(ks);
Ax(sho)=is*a;
No(sho)=ks;
end
end
figure(1)
plot(XT,YT,'*')
Ax=Ax/a;for ik=1:101
K(ik)=(-pi+(ik-1)*((2*pi)/100))*(1-q);

H=H0(Nbnd);

for is=1:NU
for js=1:sho
dis=sqrt(((XT(is)-XT(js))^2)+((YT(is)-YT(js))^2));
if abs(dis-2.232)<0.1 & abs(No(is)-No(js))>0
l=(XT(is)-XT(js))/dis;
m=(YT(is)-YT(js))/dis;
n=(ZT(is)-ZT(js))/dis;
h1=hamiltonian1(l,m,n);
h2=hamiltonian2(l,m,n);

H((No(is)-1)*4+1:No(is)*4,(No(js)-1)*4+1:No(js)*4)=H((No(is)-1)*4+1:No(is)*4,(No(js)-1)*4+1:No(js)*4)+h1*exp(i*K(ik)*Ax(js))+h2*exp(i*K(ik)*Ax(js));

end
end

end

E(ik,1:Nbnd)=sort(real(eig(H)));pl(ik)=(ik-1)/100;

end

figure(2)
plot(E)

[V,D]=eig(H);
f=diag(D);
g=f<0;
g1=f(g);
r=sum(g1)
 
So is this yes or no? :smile:
 
A suggestion: learn about formatting code on PF. What you posted is HARD to read, IMO. And hopefully the real code does not look like what you posted.
 
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top