Poisson brackets of angular momentum components

AI Thread Summary
The discussion focuses on calculating the Poisson brackets of angular momentum components, specifically [M_i, M_j]. The user begins with the expression for M_i and M_j, applying the Poisson bracket formula but encounters confusion due to the presence of multiple indices. They mistakenly simplify the summation, leading to an incorrect result of [M_i, M_j] = -p_iq_j instead of the correct [M_i, M_j] = q_ip_j - p_iq_j. A key suggestion is to use distinct dummy indices to avoid confusion in the summation process. The user seeks clarification on their error and guidance on how to proceed correctly.
bznm
Messages
181
Reaction score
0
I want to find [M_i, M_j] Poisson brackets.

$$[M_i, M_j]=\sum_l (\frac{\partial M_i}{\partial q_l}\frac{\partial M_j}{\partial p_l}-\frac{\partial M_i}{\partial p_l}\frac{\partial M_j}{\partial q_l})$$

I know that:

$$M_i=\epsilon _{ijk} q_j p_k$$

$$M_j=\epsilon _{jnm} q_n p_m$$

and so:

$$[M_i, M_j]=\sum_l (\frac{\partial \epsilon _{ijk} q_j p_k}{\partial q_l}\frac{\partial \epsilon _{jnm} q_n p_m}{\partial p_l}-\frac{\partial \epsilon _{ijk} q_j p_k}{\partial p_l}\frac{\partial \epsilon _{jnm} q_n p_m}{\partial q_l})$$

$$= \sum_l \epsilon _{ijk} p_k \delta_{jl} \cdot \epsilon_{jnm} q_n \delta_{ml}- \sum_l \epsilon_{ijk}q_j \delta_{kl} \cdot \epsilon_{jnm} p_m \delta_{nl}$$

Then I have thought that values that nullify deltas don't add any informations in the summations. And so, $$m=l, j=l$$ but so I obtain $$m=j$$. But if $$m=l$$, the second Levi-Civita symbol in the first summation is zero... And if I go on, I obtain $$[M_i, M_j]=-p_iq_j$$ instead of $$[M_i, M_j]=q_ip_j-p_iq_j$$

Where am I wrong? :| Could you say to me how to go on? Thanks a lot!
 
Physics news on Phys.org
You have 3 j's in the same term. Make sure your dummy indices (i.e. the ones that are summed over) are different from the variable indices. Use a different letter for each dummy index to avoid confusion.
 
madness said:
You have 3 j's in the same term. Make sure your dummy indices (i.e. the ones that are summed over) are different from the variable indices. Use a different letter for each dummy index to avoid confusion.

Thank you!
 
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top