Short Beam Stress Concentration

AI Thread Summary
The discussion focuses on estimating maximum bending stresses in a short cantilever beam with a length/depth ratio of 1, which does not meet traditional beam criteria. The original poster seeks stress concentration factors for this scenario, acknowledging that Roark's formulas are typically applicable to longer beams. Responses clarify that stress concentration factors are relevant only where there are sudden geometric changes, which are absent in this case. While Mc/I can provide a rough estimate for bending stress, accuracy may require finite element analysis (FEA) or strain testing. The conversation concludes with a plan to incorporate Timoshenko effects and perform analytical calculations alongside FEA for better accuracy.
elsikre
Messages
6
Reaction score
0
Hi there

Are anyone familiar with tables of stress concentration factors, or the like for short beams for different span/depth ratios.

My beam is technically not a beam, but I would still like to estimate maximum bending stresses related to normal stresses caused by bending moment (sigma = Mc/I) near the fixation. According to Roarks Formulas for Stress and Strain (7th edition p167) span/depth ratios of less than 3 does no longer give accurate results with Mc/I, but the stress distribution changes depending on the manner of loading and support. I kind of need tables with these factors or the like.

My "beam" is classic example of a short cantilever beam fixated at the left end, transverse point load at the tip.
lengt/span = 0.2
height/depth = 0.2
thickness/width = 0.04

Any one can give me a hint on this one ?
 

Attachments

  • beam.jpg
    beam.jpg
    1.8 KB · Views: 512
Engineering news on Phys.org
Hi odmart01

Thank you for your interest in this subject an your reply. I actually know it is not a beam because it does not fulfill the span/depth ratio to use Euler Bernoulli etc. That is also why I wrote: "My beam is technically not a beam", buty still Roarks Formulas for stress and strain uses the term "Beam" even for extremely short and deep beams, so I just didn't know what to call it.

But anyway, let us say that you were given the task to estimate highest bending stresses in this short structure with length/depth ratio of 1, due to the given constraint and transverse force applied. My question is whether it might be possible to calculate analytical, or will it be only possible to do by FEA.

The case is, that Roarks formulas has a table with stress concentration factors, but that is (as I can see) only for simply supported extremely short beam.

- And thanks a lot for the link.
 
Stress concentration only comes into play where you have a sudden change in geometry or shape, such as near a fillet, a hole, etc. In your problem, you don't have that.

The size of the beam does complicate things, but you still can use Mc/I to get a ballpark of stress due to bending. Sure, it's not accurate, but if you want accuracy, throw it into some analysis software or do some strain testing.

One more thing, you probably want to look at the shear due to bending in this problem. The VQ/It stress will play a large role in the problem due to the shortness of the "beam".
 
Great. It is nice to hear that this guess should be close enough. I will do some guesses at the axial stresses related to the bending of the profile, and include Timoshenko effects in an analytical calculation of deformation as well. Of course some FEA. That should do the trick then. Thanks.
 
Thread 'Turbocharging carbureted petrol 2 stroke engines'
Hi everyone, online I ve seen some images about 2 stroke carbureted turbo (motorcycle derivation engine). Now.. In the past in this forum some members spoke about turbocharging 2 stroke but not in sufficient detail. The intake and the exhaust are open at the same time and there are no valves like a 4 stroke. But if you search online you can find carbureted 2stroke turbo sled or the Am6 turbo. The question is: Is really possible turbocharge a 2 stroke carburated(NOT EFI)petrol engine and...
I need some assistance with calculating hp requirements for moving a load. - The 4000lb load is resting on ball bearing rails so friction is effectively zero and will be covered by my added power contingencies. Load: 4000lbs Distance to travel: 10 meters. Time to Travel: 7.5 seconds Need to accelerate the load from a stop to a nominal speed then decelerate coming to a stop. My power delivery method will be a gearmotor driving a gear rack. - I suspect the pinion gear to be about 3-4in in...
Back
Top