What is Potential: Definition and 1000 Discussions

Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple release of energy by objects to the realization of abilities in people. The philosopher Aristotle incorporated this concept into his theory of potentiality and actuality, a pair of closely connected principles which he used to analyze motion, causality, ethics, and physiology in his aPhysics, Metaphysics, Nicomachean Ethics and De Anima, which is about the human psyche. That which is potential can theoretically be made actual by taking the right action; for example, a boulder on the edge of a cliff has potential to fall that could be actualized by pushing it over the edge. Several languages have a potential mood, a grammatical construction that indicates that something is potential. These include Finnish, Japanese, and Sanskrit.In physics, a potential may refer to the scalar potential or to the vector potential. In either case, it is a field defined in space, from which many important physical properties may be derived. Leading examples are the gravitational potential and the electric potential, from which the motion of gravitating or electrically charged bodies may be obtained. Specific forces have associated potentials, including the Coulomb potential, the van der Waals potential, the Lennard-Jones potential and the Yukawa potential. In electrochemistry there are Galvani potential, Volta potential, electrode potential, and standard electrode potential. In the
thermodynamics, the term potential often refers to thermodynamic potential.

View More On Wikipedia.org
  1. L

    Why Do Physical Systems Seek Minimum Potential Energy?

    Many, many years ago while in engineering graduate school I was studying calculus of variations. One classic problem was to determine the shape of a hanging cable supported at its two ends. After minimizing the integral, the catenary curve was the solution. The basic assumption in setting up...
  2. Diracobama2181

    Potential and E field for a non homogeneous charge Density

    Based on the conditions, I found that $$V(x)=\frac{a^2}{\pi^2} ρ_0sin(πx/a)$$ would be a solution to Laplace's equation for $$|x|\leq a$$ and $$V(x)=cx+d$$, where c and d are constants. From the boundary conditions, $$\frac{dV(a)}{dx}=\frac{a}{\pi} ρ_0cos(πa/a)=ac$$, $$c=\frac{a\rho}{\pi}$$ and...
  3. P

    Battery Voltage: Potential & Chemical Reaction

    I have read that the potential V = E*d for a constant electric field E, so this is related to the battery voltage of some voltage say 12v etc. Because battery will produce voltage using chemical reaction. Above two are different concepts or related? Please advise.
  4. C

    Electrical potential of a thin wire in an E field

    Assume that an infinite metallic plate A lies in the xy-plane, and another infinite metallic plate B is parallel to A and at height z = h. The potential of plate A is 0, and the potential of plate B is constant and equal to V. So, there is a uniform electrostatic field E between plates A and B...
  5. E

    Not sure why my method doesn't work: Springs, Potential Energy and Work

    I know that you can get the answer through using Fs as 18 and solving for K, then subbing it into the equation for elastic energy. I was just wondering why another method wouldn't work. I tried doing it using the concept that Work is an equal to the Change in Elastic Energy, therefore Ee=xF...
  6. S

    Finding the potential energy if force depends on both position and time

    How to find potential energy if force depends on both position of particle and time ? Suppose force is : f(r,t) = (k/r^2) * exp(-alpha*t), k, alpha = positive constants, r = position of the particle from force-centre t = time Is this force a conservative or non-conservative ?
  7. torito_verdejo

    Electrostatics: sign of the potential

    The final result will only differ in its sign, but this is crucial. Having a positively, radially oriented electric field ##\textbf{E}##, I understand that the sign of the integral should be positive (## - (- A) = A##), but it is not! How and why is this the case? A line integral where the...
  8. C

    Electrostatic potential due to a dipole

    Given here is that by geometry r1^2 =r^2 +a^2 - 2ar*cos(theta) But if we try to do vector addition then since direction of dipole is upwards then it should be r^2 =r1^2 +a^2 + 2ar1*cos(alpha) Where alpha is the angle between a and r1. I Don,'t understand how they get it by geometry
  9. C

    Why Potential Energy cannot be included twice?

    If for example I have two charged particles q_1 , q_2 with distance 'r' between them, then: The potential energy that results from particle q_1 exerting force on particle q_2 is $$ k\frac{q_1 q_2}{r} $$ If I do the same process for particle q_2: The potential energy that results...
  10. falconblade

    Changing the k constant in voltage potential equation?

    Summary:: What if you were calculating the voltage potential for a dipole, but underwater? I'm making a predictive model (in R programming) for the voltage potential at any point around a dipole. I need to be able to change parameters, one being the k constant. V=( kpcosѲ)/(r^2). Where V is...
  11. Tryhard314

    Why does the potential of A decrease when plate B is nearby?

    Summary:: if Plate A had a potential of 9V, This means as We approach a unit charge from +Infinity to A we have to do this precise amount of work Now we remove plate A, And replace it with plate B that has a potential of -9V Again that means to go from +Infinity To B we actually gain energy, or...
  12. T

    Quantum tunneling: T(E) graph for a potential barrier diagram

    This is the V(x) diagrams and what I am thinking (really not sure though) is that for the first one you the energy has to reach V2 before it can start transmitting and the graph can take off from T=0, since there is an increase in energy potential that is V2. And as the energy increases, the...
  13. R

    Vector potential of current flowing to a point from all directions

    I am having problem with part (b) finding the vector potential. More specifically when writing out the volume integral, $$A = \frac{\mu_0}{4\pi r}\frac{dq}{dt}\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{?}\frac{1}{4\pi r'^2} r'^2sin\theta dr'd\theta d\phi$$ How do I integrate ##r'##? The solution...
  14. n3pix

    A question about potential energy and work

    Hello, I'm confusing about the basic terms about Conservation of Energy, Potential Energy and Work. Consider that we have a mass ##M## above the ground (zero point) distance of ##y_{0}=h##. When we release the mass it will accelerate through it's way to ground. So the work is made by a field...
  15. C

    Phase space volume with a potential (microcanonical ensemble)

    I don't know how to solve that integral, and to calculate the number of microstates first, then aply convolution and then integrate to find the volume of the phase space seems to be more complicated. Any clue on how to solve this? Thank you very much.
  16. Elder1994

    The Laplacian of the potential q*exp(-r)/r

    Hello, I have a problem where I'm supposed to calculate the charge distribution ρ. I need to calculate it by applying the Laplacian operator to the potential Θ. The potential is the function: q*exp(-αr)/r I found on the internet that for this type of potentials I cannot just apply the...
  17. nmsurobert

    Potential difference: positive or negative?

    I am working out an example problem from one of my textbooks and I am a bit confused on why a value is negative. The problem asks: Calculate the final speed of a free electron accelerated from rest through a potential difference of 100 V. This is a conservation of energy problem. Ultimately you...
  18. Tryhard314

    Salt water and potential difference

    Imagine a container of salt water at 0V (Relative to ground),Now you've put in it 2 electrodes,one at +500V (Electrode A), The other at +250V(Electrode b), Normally positive ions should go to the negative electrode , and Negative ions should go to the positive electrode , But in our example the...
  19. Diracobama2181

    Virial Expansion Approximation of of Lennard Jones Potential

    I get $$B_2(T)=2\pi N\int_{0}^{\infty} (1-e^{-\beta E_0((\frac{r_0}{r})^{12}-2(\frac{r_0}{r})^6)})r^2dr$$ as the coefficient. I was just unsure how to evaluate it numerically from here. Any suggestions would be appreciated. Thank you.
  20. binbagsss

    What is the difference between gauge potential and gauge connection?

    and when are they the same thing? In quite simple terms.Many thanks
  21. M

    Yukawa Potential: Find Value of Parameter 'a

    So this is the problem: My only point of confusion right now is in what the value of a is... I'm having trouble finding it anywhere, and online stuff about the yukawa potential just states that it's a parameter. Thanks for any help! Edit: It might be worth noting that gamma equals kq1q2.
  22. QuasarBoy543298

    I Deduce if the spectrum is discrete/continuous from the potential

    I have one-dimensional problem with a one-dimensional potential I want to know the energy domains that will result in discrete energy levels and the energy domains that will result in continuous energy levels In my lecture, my professor gave the example of v(r) = 1/r (r>0) (hydrogen atom...
  23. Sofa

    Issues Determining Change in Elastic Potential Energy

    I've attached a screengrab of the problem (Specifically, Part B, as indicated in the image) and my attempt at a solution. Summarized, my thinking was based on using ##-\Delta U=\frac{Kx_i^2-Kx_f^2}{2}##. After using up all my attempts, the solution, as it turns out, was U2=4.91J. No variation...
  24. maistral

    Ergun equation for beds + rising fluid + potential energy

    I am quite familiar with the Ergun equation's formulation. My question is, do I need to subtract the potential term ΔP/Δz = -ρg/gc after the Ergun equation's own ΔP/Δz , assuming that the fluid is to be pumped upward, from the bottom of the bed to the top of the bed? I was thinking it should be...
  25. J

    Finding electric potential at a point between 3 electrodes.

    Firstly, I am not a English speaker. So I apologize that I cannot use English well.. I got a), c), e) a) at 0.5cm, E = -q/(2e_0*A) - Q/(2e_0*A) + q/(2e_0*A) = -1.4*10^7 V/m c) at 1.5 cm, E = 0 (inside electrode) e) at 2.5cm, E = -q/(2e_0*A) + Q/(2e_0*A) + q/(2e_0*A) = 1.4*10^7 V/m And I am...
  26. N

    Calculating Gravitational Forces and Potential Energy Using Newton's Laws

    For the first part, I considered the Force acting on it by all charges as given by $$\vec {F} = \Sigma_{j} \frac{m_{i} m_{j}}{\left(r_j - r_i \right)^{1.5}} \vec{r_j} - \vec {r_i} = \Sigma_j m_i \vec {g_j} $$ Where ##\vec{g_{j}}## represents gravitational acceleration of ##m_i## due to jth mass...
  27. U

    Catapult spring, Kinetic and Potential energy

    My solutions: When ball is launched horizontally, assuming its velocity is entirely in the horizontal dimension, there is no interaction of the ball with the gravitational field, thus no change in GPE, so all of the EPE (elastic potential energy ) of the spring is transferred to KE of the ball...
  28. J

    Potential sweep vs current sweep for a Polarization Curve

    Hello, I'm trying to obtain a polarization curve for a fuel cell (two electrodes in HCl). From what I've seen in literatures, current is applied and the voltage is measured. Is it still the same to change the voltage and measure the current instead? For some reason our equipment only have the...
  29. I

    Central Potential Repulsive Scattering

    I have one problem with this question that I've been struggling with. Initially, the total energy should be given by E =m1* v0^2/2 (as U goes to zero, and m2 is at rest). However, if we write r = r1 - r2, we get E = mu*rdot^2/2 + U_eff(r), U_eff(r) also goes to 0, where mu is the reduced mass...
  30. Samanko

    Potential energy of an electric dipole

    This is a problem from a textbook, and I can't solve it. I know that the equation of Potential energy of electric dipole. Since the configuration is a little bit complicated. I'm confused applying which electric fields.
  31. K

    Visual Python Pendulum: Solving the Forces

    Hello and thanks in advance for your help. For about a week now, I've been trying to write what should be a simple python program. The idea is first to write a program for a simple harmonic pendulum, then adapt it to a spring pendulum. However, in order to do this, I have to write the simple...
  32. M

    Find the maximum potential difference across a series circuit

    I'm not really sure what I need to find exactly. From what I'm seeing, I could give C1 the max potential difference of 125V because it has the lowest capacitance, and because V = Q/C, this means the capacitor with the highest potential difference across its plates will be the one with the lowest...
  33. Haynes Kwon

    I Probability flux inside the finite potential barrier

    In Bransden textbook, it is stated that the probability current density is constant since we are dealing with 1-d stationary states. It gives probability flux outside the finite potential barrier which I verified to be constant with respect to x, but it doesn't provide the probability current...
  34. I

    Dipole moment from electrostatic potential equation

    Hello to everyone. The question or debate here is how you obtain the commonly known equation of dipole electric moment: from the electrostatic potential equation for a multipole of order n: I understand it is related with Dirac delta functions but a step by step solution might be helpful.Thank...
  35. A

    Admissions Following Up with Potential PhD advisor after Applying?

    Hi everyone, I recently finished applying to a university for grad school. Previously, I had contacted a professor with whom I wanted to work with, and it seemed they were also interested in taking me as a PhD student. Ideally, would one follow up (by email) with the professor once they've...
  36. C

    Interactions and Potential Energy

    Usps=1/2(1.8x10^6)(0.03)^2=810J Ke=1/2mv^2=1/2(0.05)(300)^2=2250J I don't know how to take it farther than this, or if this is the correct way to start the problem. If this is correct, would it be correct to assume that the bullet does penetrate the creature because Ke overcomes Usps?
  37. EEristavi

    Calculate this Spring's Potential Energy

    I know that gravitational potential energy is decreased by E = -m g h = -1 10 0.02 = -0.2. So, the spring potential energy must be E=0.2 (Joule). However, in the answer's sheet I have E=0.1 What mistake do I make?
  38. P

    Solutions to schrodinger equation with potential V(x)=V(-x)

    C is just the constant by ##\psi''## My initial attempt was to write out the schrodinger equation in the case that x>0 and x<0, so that $$ \frac {\psi'' (x)} {\psi (x)} = C(E-V(x))$$ and $$ \frac {\psi'' (-x)} {\psi (-x)} = C(E-V(-x))$$ And since V(-x) = V(x) I equated them and...
  39. M

    Potential functions for separation and isochronic gauges

    Most potentials in physics are expressed as a radius or another geometric norm/gauge. I am looking to understand the significance of the choice of potential functions for force/pressure separation in harmonic analysis before this creates a topology. To my understanding this is the decision of...
  40. SLTH02

    Determine the potential energy function of the charged particle

    I understand that you need to integrate f(x), and the negative of that is U(x). But the last part of the problem says "Clearly state any assumptions you make." And the answer is just the antiderivative of that f(x) without any constant from integrationHow does that make sense
  41. J

    B Exploring Force & Potential Energy of a Donut-Shaped Planet

    So, let's say you have a donut - shaped planet, so a second object can move right on top of the center of mass of the first object. Does force go to infinity? How about potential energy? Or, just take one object, divide it into elements, what happens to the central element of mass within the...
  42. menniandscience

    Retarded and advanced potentials

    "of the two types of solutions which the Maxwell equations yield for the wave equation, the retarded and advanced potentials, only the retarded field seems to have a physical meaning," let's start please with basic (and detailed as possible for the knowledgeable layman! p.s-which equation is...
  43. S

    Correct statement about gravitational force, field and potential

    I think choice B is correct because when I draw the free body diagram of each object, there are three forces acting on each of them and the resultant force is towards the center. Choice C is wrong because the net field at center is zero. I think choice D is also correct because if the...
  44. D

    What happens when one of two cocentric spherical shells is grounded?

    Hi! I need help with this problem. When the outer shell is grouded, its potential goes to zero, ##V_2=0## and so does it charge, right? ##-Q=0##. So the field would be the one produced by the inner shell ##E=\frac{Q}{4\pi\epsilon_0 R_1^2}##. When the inner shell is grounded, I think that...
  45. jisbon

    Potential difference in Capacitors

    Firstly, I'm given this complicated circuit as shown below. What I have to do first, is to simplify it, which I will need help in checking. One question here: It's not possible to simplify this by adding resistors in series and capacitors in series am I, right? Or is it possible in this case...
  46. SpaceThoughts

    What Does Negative Potential Energy Indicate in Colliding Iron Balls in Space?

    Hi Everyone. I am hoping to get a little help with this: Two equal balls of iron each with a mass of 1000 kg are placed in rest in space 10 meters from each other. Because of gravity they start to accelerate towards each other, and collide in the end. I would like to know how to calculate the...
Back
Top