Conditional Probability of a continuous joint distribution function

So you only need to differentiate that function to get the conditional density.For the second part, you need the conditional density f(x|Y<1). Your method 1 solution of the first part of the problem shows that you already know what it is. You have integrated it to calculate the conditional cumulative distribution function at x = 1. So you only need to differentiate that function to get the conditional density.
  • #1
h1a8
87
4
Homework Statement
For the following joint density
f(x,y)=3/4(2-x-y) for 0<x<2,0<y<2,x+y<2 and f(x,y) = 0 otherwise
1) What is the conditional probability P(X<1|Y<1)?
2) What is E[X|Y<1]?
Relevant Equations
1) P(A|B) = P(A and B)/P(B) or ∫_0^1▒∫_0^1▒〖f(x│y)dydx〗
for
2) E[X│Y]=∫_0^(2-y)▒〖x∙(f(x,y))/(f_Y (y))〗 dx
For 1) I found two ways but I get difference results.
The first way is I use P(A|B) = P(A and B)/P(B).
I get P(X<1|Y<1)=(∫_0^1▒∫_0^1▒〖3/4 (2-x-y)dydx〗)/(∫_0^1▒∫_0^1▒〖3/4 (2-x-y)dydx〗+∫_1^2▒∫_0^(2-x)▒〖3/4 (2-x-y)dydx〗)=6/7

The 2nd method is I use is
f(x│y)=f(x,y)/(f_X (x) )=(3/4(2-x-y))/(∫_0^(2-x)▒〖3/4(2-x-y)dy〗)=(2(2-x-y))/〖(2-x)〗^2 for 0<x<2

So P(X<1│Y<1)=∫_0^1▒∫_0^1▒〖2(2-x-y)/(2-x)^2 dydx〗=ln⁡(4)-1/2

For 2) I know that E[X│Y]=∫_0^(2-y)▒〖x∙(f(x,y))/(f_Y (y))〗 dx but I have no idea how to start E[X│Y<1]=∫_0^(2-y)▒〖x∙(f(x,y))/(f_Y (y))〗 dx
Im thinking of a double integral maybe.

Thanks!
 

Attachments

  • stat problems.docx
    14.2 KB · Views: 357
Physics news on Phys.org
  • #2
h1a8 said:
For 1) I found two ways but I get difference results.
The first way is I use P(A|B) = P(A and B)/P(B).
I get P(X<1|Y<1)=(∫_0^1▒∫_0^1▒〖3/4 (2-x-y)dydx〗)/(∫_0^1▒∫_0^1▒〖3/4 (2-x-y)dydx〗+∫_1^2▒∫_0^(2-x)▒〖3/4 (2-x-y)dydx〗)=6/7

The 2nd method is I use is
f(x│y)=f(x,y)/(f_X (x) )=(3/4(2-x-y))/(∫_0^(2-x)▒〖3/4(2-x-y)dy〗)=(2(2-x-y))/〖(2-x)〗^2 for 0<x<2

So P(X<1│Y<1)=∫_0^1▒∫_0^1▒〖2(2-x-y)/(2-x)^2 dydx〗=ln⁡(4)-1/2

For 2) I know that E[X│Y]=∫_0^(2-y)▒〖x∙(f(x,y))/(f_Y (y))〗 dx but I have no idea how to start E[X│Y<1]=∫_0^(2-y)▒〖x∙(f(x,y))/(f_Y (y))〗 dx
Im thinking of a double integral maybe.

Thanks!
You might get a lot more responses to your posts if you made then in a readable form. Take a look at https://www.physicsforums.com/help/latexhelp/ for a simple way to do this. Your equations are almost there as you wrote them. You only need to enclose them in "\$$" and fix a couple of things and you have it. I did this with some of what you have written so I could read it and got this: $$P(X<1|Y<1)=\frac{(\int_0^1\int_0^1〖3/4 (2-x-y)dydx〗)}{(\int_0^1\int_0^1〖3/4 (2-x-y)dydx〗+\int_1^2\int_0^{2-x}〖3/4 (2-x-y)dydx〗)}=6/7$$
$$f(x│y)=f(x,y)/(f_X (x) )=(3/4(2-x-y))/(∫_0^{2-x}〖3/4(2-x-y)dy〗)=(2(2-x-y))/〖(2-x)〗^2$$ for 0<x<2

So $$P(X<1│Y<1)=∫_0^1∫_0^1〖2(2-x-y)/(2-x)^2 dydx〗=ln⁡(4)-1/2$$
You can see what I did by right clicking on an equation and choosing "Show Math as>Tex Commands" from the menu. It won't show the "\$$" delimiters, but it will show everything else.

That said, your first method of solving for the conditional probability is correct. In the second one you assume that you can integrate ##f(x|y)## over ##y##, and that is not correct.
 
Last edited:
  • #3
h1a8 said:
For 1) I found two ways but I get difference results.
The first way is I use P(A|B) = P(A and B)/P(B).
I get P(X<1|Y<1)=(∫_0^1▒∫_0^1▒〖3/4 (2-x-y)dydx〗)/(∫_0^1▒∫_0^1▒〖3/4 (2-x-y)dydx〗+∫_1^2▒∫_0^(2-x)▒〖3/4 (2-x-y)dydx〗)=6/7

The 2nd method is I use is
f(x│y)=f(x,y)/(f_X (x) )=(3/4(2-x-y))/(∫_0^(2-x)▒〖3/4(2-x-y)dy〗)=(2(2-x-y))/〖(2-x)〗^2 for 0<x<2

So P(X<1│Y<1)=∫_0^1▒∫_0^1▒〖2(2-x-y)/(2-x)^2 dydx〗=ln⁡(4)-1/2

For 2) I know that E[X│Y]=∫_0^(2-y)▒〖x∙(f(x,y))/(f_Y (y))〗 dx but I have no idea how to start E[X│Y<1]=∫_0^(2-y)▒〖x∙(f(x,y))/(f_Y (y))〗 dx
Im thinking of a double integral maybe.

Thanks!
The first method you used is correct; it uses the definition of conditional probability and correctly calculates all the needed quantities.

The second method seems to be some sort of mysterious new method that you invented for yourself, and as far as I can see makes no sense. ##P(A | Y < 1)## is not related in any simple way to ##P(A|y)##

I did not look at your attachments, as I typically cannot get such things to open properly on my laptop and not open in any form at all on my i-phone. Just type out your work, as you have done, but take care to separate and label different parts of the calculation. Instead of trying to type out everything on one line, why not use some words and separate lines to clarify what you are doing? Instead of saying "I get P(X<1|Y<1)=(∫_0^1▒∫_0^1▒〖3/4 (2-x-y)dydx〗)/(∫_0^1▒∫_0^1▒〖3/4 (2-x-y)dydx〗+∫_1^2▒∫_0^(2-x)▒〖3/4 (2-x-y)dydx〗)=6/7", why not say
P(X < 1 and Y < 1) = int_{x=0..1} int_{y=0..1} f(x,y) dx dy = ... (complete here)... and then, possibly on another line
P(Y < 1) = int_{x=0..1} int_{y=0..1} f(x,y) dx dy + int_{x=1..2} int_{y=0..2-x) f(x,y) dx dy = ...(complete here). Then, take the ratio to get the answer. No extra work involved, but a presentation that is much clearer and easier to follow.
 
Last edited:
  • #4
tnich said:
You might get a lot more responses to your posts if you made then in a readable form. Take a look at https://www.physicsforums.com/help/latexhelp/ for a simple way to do this. Your equations are almost there as you wrote them. You only need to enclose them in "\$$" and fix a couple of things and you have it. I did this with some of what you have written so I could read it and got this: $$P(X<1|Y<1)=\frac{(\int_0^1\int_0^1〖3/4 (2-x-y)dydx〗)}{(\int_0^1\int_0^1〖3/4 (2-x-y)dydx〗+\int_1^2\int_0^{2-x}〖3/4 (2-x-y)dydx〗)}=6/7$$
$$f(x│y)=f(x,y)/(f_X (x) )=(3/4(2-x-y))/(∫_0^{2-x}〖3/4(2-x-y)dy〗)=(2(2-x-y))/〖(2-x)〗^2$$ for 0<x<2

So $$P(X<1│Y<1)=∫_0^1∫_0^1〖2(2-x-y)/(2-x)^2 dydx〗=ln⁡(4)-1/2$$
You can see what I did by right clicking on an equation and choosing "Show Math as>Tex Commands" from the menu. It won't show the "\$$" delimiters, but it will show everything else.

That said, your first method of solving for the conditional probability is correct. In the second one you assume that you can integrate ##f(x|y)## over ##y##, and that is not correct.
For the second part, you need the conditional density f(x|Y<1). Your method 1 solution of the first part of the problem shows that you already know what it is. You have integrated it to calculate the conditional cumulative distribution function at x = 1.
 

What is conditional probability of a continuous joint distribution function?

Conditional probability of a continuous joint distribution function is the probability of an event occurring given that another event has already occurred, in the context of a continuous joint distribution. It is used to calculate the likelihood of an outcome based on the occurrence of another outcome.

How is conditional probability of a continuous joint distribution function calculated?

Conditional probability of a continuous joint distribution function is calculated using the formula P(A|B) = P(A and B) / P(B), where P(A|B) represents the probability of event A occurring given that event B has occurred, P(A and B) represents the probability of both events A and B occurring, and P(B) represents the probability of event B occurring.

What is the difference between conditional probability and joint probability?

Conditional probability and joint probability are both measures of the likelihood of events occurring. However, conditional probability takes into account the occurrence of another event, while joint probability does not. In other words, conditional probability is the probability of an event occurring given that another event has already occurred, while joint probability is the probability of both events occurring simultaneously.

What is the relationship between conditional probability and Bayes' theorem?

Conditional probability is a key component of Bayes' theorem, which is a mathematical formula used to calculate the probability of an event based on prior knowledge or information. Bayes' theorem states that the probability of an event A given an event B is equal to the probability of event B given event A, multiplied by the probability of event A and divided by the probability of event B.

How is conditional probability of a continuous joint distribution function used in real-world applications?

Conditional probability of a continuous joint distribution function has many practical applications, including in fields such as finance, medicine, and engineering. It is used to make predictions and informed decisions based on data and previous events, and is also used in risk assessment and statistical modeling.

Similar threads

  • Calculus and Beyond Homework Help
Replies
10
Views
458
  • Calculus and Beyond Homework Help
Replies
2
Views
399
  • Calculus and Beyond Homework Help
Replies
1
Views
954
  • Calculus and Beyond Homework Help
Replies
4
Views
700
  • Calculus and Beyond Homework Help
Replies
5
Views
626
Replies
9
Views
1K
  • Calculus and Beyond Homework Help
Replies
12
Views
995
  • Calculus and Beyond Homework Help
Replies
2
Views
550
  • Calculus and Beyond Homework Help
Replies
11
Views
2K
  • Calculus and Beyond Homework Help
Replies
19
Views
974
Back
Top