How Do You Evaluate the Limit of (1/tan(x) - 1/x)/x Using Taylor Series?

  • Thread starter lep11
  • Start date
  • Tags
    Limit
In summary, a limit in mathematics is a fundamental concept that describes the behavior of a function as its input approaches a certain value or point. Evaluating limits is important because it helps us understand the behavior of a function and its values near a particular point. To evaluate a limit algebraically, you can use various techniques such as factoring, rationalizing, and using special limit rules. The three common types of limits that need to be evaluated are one-sided limits, infinite limits, and limits at infinity. Limits can also be evaluated using technology, but it is important to have a strong understanding of the concept and be able to evaluate limits algebraically.
  • #1
lep11
380
7

Homework Statement


Evaluate the limit ##\lim_{x\to0} \frac{1}{x}(\frac{1}{tanx}-\frac{1}{x}) ## using Taylor's formula. (Hint: ##\frac{1}{1+c}=\frac{1-c^2+c^2}{1+c} ## may be useful)

The Attempt at a Solution


I began by substituting ##tanx## with ##x+\frac{x^3}{3}+x^3ε(x)##, where ε tends to zero as x approaches 0.

##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}-x^3ε(x))}{x(x+\frac{x^3}{3}+x^3ε(x))})=\frac{1}{x}(\frac{-\frac{x^3}{3}-x^3ε(x))}{x(x+\frac{x^3}{3}+x^3ε(x))})=\frac{-\frac{x^3}{3}-x^3ε(x))}{x^2(x+\frac{x^3}{3}+x^3ε(x))}=\frac{-\frac{x^3}{3}-x^3ε(x))}{x^3+\frac{x^4}{3}+x^4ε(x))}=\frac{-\frac{1}{3}-ε(x))}{1+\frac{x}{3}+xε(x))}## →-1/3 as x→0
 
Last edited:
Physics news on Phys.org
  • #2
lep11 said:

Homework Statement


Evaluate the limit ##\lim_{x\to0} \frac{1}{x}(\frac{1}{tanx}-\frac{1}{x}) ## using Taylor's formula. (Hint: ##\frac{1}{1+c}=\frac{1-c^2+c^2}{1+c} ## may be useful)

The Attempt at a Solution


substituting ##tanx## with ##x-\frac{x^3}{3}+x^3ε(x)##, where ε tends to zero as x approaches 0.

##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}+x^3ε(x))}{x(x-\frac{x^3}{3}+x^3ε(x))})=\frac{1}{x}(\frac{\frac{x^3}{3}+x^3ε(x))}{x(x-\frac{x^3}{3}+x^3ε(x))})##

You're not far from the answer. After cancellations, you have: [itex]\frac{\frac{x^3}{3} + ...}{x^3 + ...}[/itex], where [itex]...[/itex] represents higher-order terms. If you ignore the higher-order terms, what do you get?
 
  • #3
stevendaryl said:
You're not far from the answer. After cancellations, you have: [itex]\frac{\frac{x^3}{3} + ...}{x^3 + ...}[/itex], where [itex]...[/itex] represents higher-order terms. If you ignore the higher-order terms, what do you get?
It's 1/3. But where to use the hint I am given?
 
Last edited:
  • #4
You lost a minus sign in the numerator.
 
  • #5
lep11 said:
It's 1/3. But where to use the hint I am given?

I don't get that, either.
 
  • #6
Samy_A said:
You lost a minus sign in the numerator.
You are right. It's a typo.
 
  • #7
lep11 said:

Homework Statement


Evaluate the limit ##\lim_{x\to0} \frac{1}{x}(\frac{1}{tanx}-\frac{1}{x}) ## using Taylor's formula. (Hint: ##\frac{1}{1+c}=\frac{1-c^2+c^2}{1+c} ## may be useful)

The Attempt at a Solution


I began by substituting ##tanx## with ##x-\frac{x^3}{3}+x^3ε(x)##, where ε tends to zero as x approaches 0.

##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}+x^3ε(x))}{x(x-\frac{x^3}{3}+x^3ε(x))})=\frac{1}{x}(\frac{\frac{x^3}{3}+x^3ε(x))}{x(x-\frac{x^3}{3}+x^3ε(x))})=\frac{\frac{x^3}{3}+x^3ε(x))}{x^2(x-\frac{x^3}{3}+x^3ε(x))}=\frac{\frac{x^3}{3}+x^3ε(x))}{x^3-\frac{x^4}{3}+x^4ε(x))}##??

I think you've got the wrong series for ##tan(x)##. Check your coefficients. Also, if you are going to use the Taylor series, you should use the series for ##1/tan(x)## by applying the binomial expansion to the series for ##tan(x)## or using the series for ##cot(x)##.

That said, this one looks tailor-made(!) for L'Hopital, using ##tan = sin/cos##.
 
  • #8
Samy_A said:
You lost a minus sign in the numerator.

No, I think he started with the wrong expansion for tan(x). It should be [itex]tan(x) = x + \frac{x^3}{3} + ...[/itex] not [itex]x - \frac{x^3}{3}[/itex]
 
  • #9
stevendaryl said:
No, I think he started with the wrong expansion for tan(x). It should be [itex]tan(x) = x + \frac{x^3}{3} + ...[/itex] not [itex]x - \frac{x^3}{3}[/itex]
Yes, he has a wrong Taylor series. In the denominator, that should have been ##+\frac{x^3}{3}##. But in the numerator, he expands ##x-\tan x##, so the ##\frac{x^3}{3}## gets a minus sign.
When taking the limit, the ##x³## term resulting from the ##\tan## series in the denominator is not important, but the one in the numerator is.
The correct limit is ##-\frac13##.
 
  • #10
My advice would be to do it the easy way using L'Hopital so you know what the answer is, then do it the hard way using Taylor series :wink:
 
  • #11
PeroK said:
My advice would be to do it the easy way using L'Hopital so you know what the answer is, then do it the hard way using Taylor series :wink:
Sure, the hints he got are strange. This is, as you said, tailor-made(!) for L'Hopital.
 
  • #12
##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}-x^3ε(x))}{x(x+\frac{x^3}{3}+x^3ε(x))})=...=\frac{-\frac{x^3}{3}-x^3ε(x))}{x^3+\frac{x^4}{3}+x^4ε(x))}=\frac{-\frac{1}{3}-ε(x))}{1+\frac{x}{3}+xε(x))}## →-1/3 as x→0

Looks like I didn't need the hint. However, I think I'm supposed to derive the Taylor formula I used for the problem. We have covered expansions for sinx and cos x in class. So ##tanx=\frac{sinx}{cosx}=\frac{x-\frac{x^3}{3!}+\frac{x^5}{5!}-...}{1-\frac{x^2}{2!}+\frac{x^4}{4!}-...}=##
 
Last edited:
  • #13
lep11 said:
##\frac{1}{x}(\frac{1}{tanx}-\frac{1}{x})=\frac{1}{x}(\frac{x-tanx}{xtanx})=\frac{1}{x}(\frac{x-x-\frac{x^3}{3}-x^3ε(x))}{x(x+\frac{x^3}{3}+x^3ε(x))})=...=\frac{-\frac{x^3}{3}-x^3ε(x))}{x^3+\frac{x^4}{3}+x^4ε(x))}=\frac{-\frac{1}{3}-ε(x))}{1+\frac{x}{3}+xε(x))}## →-1/3 as x→0

Looks like I didn't need the hint. However, I think I'm supposed to derive the Taylor formula I used for the problem. We have covered expansions for sinx and cos x in class. So ##tanx=\frac{sinx}{cosx}=\frac{x-\frac{x^3}{3!}+\frac{x^5}{5!}-...}{1-\frac{x^2}{2!}+\frac{x^4}{4!}-...}=##

I would go for: ##1/tanx = cosx/sinx##

You might as well make things easy for yourself!

Use the binomial for ##1/sinx = (x-\frac{x^3}{3!}+\frac{x^5}{5!}- \dots)^{-1} = (1/x)(1-\frac{x^2}{3!}+\frac{x^4}{5!}- \dots)^{-1}##
 
  • #14
I actually derived the expansion for ##\tan x## from the definition of taylor formula. ##f'(x)=D\tan x=1+\tan^2 x##, ##f'(0)=1##
##f''(x)=2\tan x(1+\tan^2 x)##, ##f''(0)=0## etc. and got ##\tan x=x+\frac{x^3}{3}+x^3ε(x)##. I think this is maybe shorter and nicer than deriving it by long division.
 
Last edited:
  • #15
PeroK said:
I would go for: ##1/ \tan x = \cos x / \sin x##
I thought I had posted something on this a day or two ago. Using the first of Perok's suggestions, then common denominator, etc. :

##\displaystyle \
\frac{1}{x}\left(\frac{1}{\tan x}-\frac{1}{x}\right)
\ ##

##\displaystyle \
=\frac{x \cos x - \sin x}{x^2\sin x}
\ ##

Now use the Taylor expansions for sin x and cos x .
 

Related to How Do You Evaluate the Limit of (1/tan(x) - 1/x)/x Using Taylor Series?

1. What is a limit in mathematics?

A limit in mathematics is a fundamental concept that describes the behavior of a function as its input approaches a certain value or point. It is denoted by the symbol "lim" and is used to determine the value that a function is approaching as its input gets infinitely close to a particular value.

2. Why is it important to evaluate limits?

Evaluating limits is important because it helps us understand the behavior of a function and its values near a particular point. It also allows us to determine if a function is continuous at a given point, which is crucial in many mathematical applications.

3. How do you evaluate a limit algebraically?

To evaluate a limit algebraically, you can use various techniques such as factoring, rationalizing, and using special limit rules. You can also use L'Hopital's rule, which states that for certain types of functions, the limit of the function can be evaluated by taking the limit of the derivative of the function.

4. What are the common types of limits that need to be evaluated?

The three common types of limits that need to be evaluated are one-sided limits, infinite limits, and limits at infinity. One-sided limits are used when the input is approaching a particular value from only one side. Infinite limits are evaluated when the function approaches positive or negative infinity. Limits at infinity are used to determine the behavior of a function as the input approaches infinity.

5. Can limits be evaluated using technology?

Yes, limits can be evaluated using technology such as graphing calculators or online limit calculators. However, it is important to understand the concept and be able to evaluate limits algebraically before relying on technology. Additionally, technology may not always provide an accurate answer and can limit the understanding of the concept.

Similar threads

  • Calculus and Beyond Homework Help
Replies
1
Views
293
  • Calculus and Beyond Homework Help
Replies
4
Views
709
  • Calculus and Beyond Homework Help
Replies
17
Views
644
  • Calculus and Beyond Homework Help
Replies
22
Views
1K
  • Calculus and Beyond Homework Help
Replies
8
Views
686
  • Calculus and Beyond Homework Help
Replies
9
Views
2K
  • Calculus and Beyond Homework Help
Replies
5
Views
1K
  • Calculus and Beyond Homework Help
Replies
27
Views
2K
  • Calculus and Beyond Homework Help
Replies
6
Views
2K
Replies
5
Views
1K
Back
Top