Is the method used to evaluate the given integral correct?

In summary: To do the method correctly, you need to use the definition of absolute value to replace |4t + 2| by -4t - 2, when ##t \le -1/2##.Okay...I get it now. Thank you for the correction.In summary, the integral $$\int_{-1}^0 |4t+2| dt$$ can be evaluated using two methods. In method 1, we use u-substitution to simplify the integral and find that the area under the curve is 1 square unit. In method 2, we use the definition of absolute value to split the integral into two parts and evaluate each part separately, resulting in the same answer of 1 square unit.
  • #1
chwala
Gold Member
2,650
351
Homework Statement
This is my own question (set by myself)..I am refreshing.

Evaluate the integral

$$\int_{-1}^0 |4t+2| dt$$
Relevant Equations
Fundamental theorem of calculus -definite integrals
Method 1,
Pretty straightforward,

$$\int_{-1}^0 |4t+2| dt$$

Let ##u=4t+2##

##du=4 dt##

on substitution,

$$\frac{1}{4}\int_{-2}^2 |u| du=\frac{1}{4}\int_{-2}^0 (-u) du+\frac{1}{4}\int_{0}^2 u du=\frac{1}{4}[2+2]=1$$

Now on method 2,

$$\int_{-1}^0 |4t+2| dt=\int_{-1}^{-0.5} |4t+2| dt+\int_{-0.5}^0 |4t+2| dt=(-0.5-0)+-0.5=|-1|=1$$

We take the absolute value when finding area under curves...

your insight welcome....this things need refreshing at all times... :wink: looks like the methods are just one and the same...
 
Physics news on Phys.org
  • #2
I'm not sure what you mean by "we take the absolute value when finding area..."

The function is an absolute value. The methods are similar. How would this problem differ if there were no absolute value? A plot may help.

The u-substitution makes it intuitive where to split into 2 integrals.
 
  • Like
Likes chwala and malawi_glenn
  • #3
scottdave said:
I'm not sure what you mean by "we take the absolute value when finding area..."

The function is an absolute value. The methods are similar. How would this problem differ if there were no absolute value? A plot may help.

The u-substitution makes it intuitive where to split into 2 integrals.
@scottdave i was reffering to:

$$\int_{-1}^0 |4t+2| dt=\int_{-1}^{-0.5} |4t+2| dt+\int_{-0.5}^0 |4t+2| dt=(-0.5-0)+-0.5=-1$$

...should the negative remain or it does not matter. This is a good question almost boggled me up trying to find the definite integral of ##\int_{-1}^{-0.5} (4t+2) dt##, that is without the absolute value. ##0!## hmmmmm can't be ...

I later realized that the graph is split into two halves with ##x=0.5## as the point dividing them... to give us, Area under curve:
##A=0.5+0.5=1## square units.

or does this follow the principle of odd and even functions where for instance for odd functions,
'##\int_{-a}^{a} f(x) dx=0##? ...really rusted in these area- i need to go through my notes!...

I think i got it, there is a difference between finding the definite integral and finding the area bound by the curve ##y=f(x)## having been given the limits say, ##x_1## and ##x_2##.
 
Last edited:
  • #4
chwala said:
..should the negative remain or it does not matter.
You should not get a negative number. The graph of y = |4x + 2| is nonnegative for all real x, so any integral will also be nonnegative.

chwala said:
I later realized that the graph is split into two halves with x=0.5
You probably mean at x = -1/2.
 
  • Like
Likes Math100, malawi_glenn and chwala
  • #5
Mark44 said:
You should not get a negative number. The graph of y = |4x + 2| is nonnegative for all real x, so any integral will also be nonnegative.

You probably mean at x = -1/2.
Yes at ##x=-0.5##. I will check my working steps again...

Did you check my method ##2##? that is in post ##1##. Let me post the steps first. A minute.

$$\int_{-1}^0 |4t+2| dt=\int_{-1}^{-0.5} |4t+2| dt+\int_{-0.5}^0 |4t+2|
dt=\left[2t^2+2t\right]_{-1}^{-0.5}+\left[2t^2+2t\right]_{-0.5}^{0}$$
....one needs to be quite clear on whether you're determining the definite integral or finding the area bound by the curve.

In our case, we are just evaluating the definite integral therefore,$$\int_{-1}^0 |4t+2| dt=\int_{-1}^{-0.5} |4t+2| dt+\int_{-0.5}^0 |4t+2|
dt=\left[2t^2+2t\right]_{-1}^{-0.5}+\left[2t^2+2t\right]_{-0.5}^{0}$$

$$ =(-0.5-0)+(0+0.5)=-0.5+0.5=0$$

if it was area bound by the curve then our solution would be,$$\int_{-1}^0 |4t+2| dt=\int_{-1}^{-0.5} |4t+2| dt+\int_{-0.5}^0 |4t+2|
dt=\left[2t^2+2t\right]_{-1}^{-0.5}+\left[2t^2+2t\right]_{-0.5}^{0}$$

$$ =(-0.5-0)+(0+0.5)=|-0.5|+0.5=1$$
 
Last edited:
  • #6
chwala said:
$$\int_{-1}^0 |4t+2| dt$$
Relevant Equations: Fundamental theorem of calculus -definite integrals
You can leave this section blank if there are no relevant equations. Fundamental Thm of Calculus is really too generic to be a helpful relevant equation.
chwala said:
Now on method 2, $$\int_{-1}^0 |4t+2| dt=\int_{-1}^{-0.5} |4t+2| dt+\int_{-0.5}^0 |4t+2| dt=(-0.5-0)+-0.5=|-1|=1$$
I wouldn't use substitution (your method 1) for such a straightforward problem. I'm not saying it's wrong, just that I wouldn't go this route.

For your method 2, use the definition of absolute value to replace |4t + 2| by -4t - 2, when ##t \le -1/2##. You have a mistake in your work, so you had to "fudge" your answer by taking the absolute value.

The integral you showed in your method 2 should look like this:
$$\int_{-1}^0 |4t+2| dt=\int_{-1}^{-0.5} -4t - 2 ~dt+\int_{-0.5}^0 4t + 2 ~dt = \left . -2t^2 - 2t \right |_{-1}^{-1/2} + \left . 2t^2 + 2t \right |_{-1/2}^0$$
$$= -2/4 + 1 - 0 + 0 - (1/2 - 1) = 1$$
No fudging of the result was needed.
 
Last edited:
  • #7
Mark44 said:
You can leave this section blank if there are no relevant equations. Fundamental Thm of Calculus is really too generic to be a helpful relevant equation.

I wouldn't use substitution (your method 1) for such a straightforward problem. I'm not saying it's wrong, just that I wouldn't go this route.

For your method 2, use the definition of absolute value to replace |4t + 2| by -4t - 2, when ##t \le -1/2##. You have a mistake in your work, so you had to "fudge" your answer by taking the absolute value.

The integral you showed in your method 2 should look like this:
$$\int_{-1}^0 |4t+2| dt=\int_{-1}^{-0.5} -4t - 2 ~dt+\int_{-0.5}^0 4t + 2 ~dt = \left . -2t^2 - 2t \right |_{-1}^{-1/2} + \left . 2t^2 + 2t \right |_{-1/2}^0 $$
$$= -2/4 + 1 - 0 + 0 - (1/2 - 1) = 1$$
No fudging of the result was needed.
True, i should have taken the negative of the absolute value by considering ##x=-0.5##...Noted.

On the side i think the question simply wanted us to evaluate the integral...check...
 
  • #8
chwala said:
Noted but i think the question simply wanted us to evaluate the integral...check...
Right, I get that. What I'm saying is that your work in method 2 was incorrect. You got the right answer in this method only by "fudging" your result.
 
  • Like
Likes SammyS and chwala

1. What is the purpose of evaluating an integral?

The purpose of evaluating an integral is to find the exact value of a mathematical expression that represents the accumulation of a quantity over a certain interval. This can be used in various fields such as physics, engineering, and economics to solve real-world problems.

2. How do you know if the method used to evaluate an integral is correct?

The method used to evaluate an integral is considered correct if it follows the fundamental principles and rules of integration, such as the power rule, substitution, and integration by parts. Additionally, the solution should be verified through differentiation to ensure its accuracy.

3. What are some common errors when evaluating integrals?

Some common errors when evaluating integrals include forgetting to include the constant of integration, making mistakes in the algebraic manipulation of the integral, and using an incorrect integration method. It is important to double-check each step and be familiar with the different integration techniques.

4. Can integrals be evaluated using different methods?

Yes, integrals can be evaluated using different methods depending on the complexity of the function and the specific problem being solved. Some common methods include substitution, integration by parts, and trigonometric substitution. It is important to choose the most appropriate method for each integral to ensure accuracy and efficiency.

5. How can one improve their skills in evaluating integrals?

To improve skills in evaluating integrals, one should practice regularly and familiarize themselves with the different integration techniques. It is also helpful to review the fundamental principles and rules of integration, as well as common mistakes to avoid. Seeking guidance from a teacher or tutor can also be beneficial in improving integral evaluation skills.

Similar threads

  • Calculus and Beyond Homework Help
Replies
3
Views
586
  • Calculus and Beyond Homework Help
Replies
2
Views
392
Replies
1
Views
611
  • Calculus and Beyond Homework Help
Replies
1
Views
626
  • Calculus and Beyond Homework Help
Replies
15
Views
788
  • Calculus and Beyond Homework Help
Replies
10
Views
743
  • Calculus and Beyond Homework Help
Replies
11
Views
1K
  • Calculus and Beyond Homework Help
Replies
12
Views
994
  • Calculus and Beyond Homework Help
Replies
5
Views
620
  • Calculus and Beyond Homework Help
Replies
9
Views
964
Back
Top