If the inner product is defined on V with dimension less than or equal to 3 as \left\langle f,g \right\rangle = \int_{0}^{1}f(x)g(x)dx, I'm trying to find D* such that \left\langle Df,g \right\rangle = \left\langle f,D*g \right\rangle, and I thought I had a closed form of D*. If {1, x, (x^2)/2...