Homework Statement
We say that a differentiable function f : \mathbb{R}^n \rightarrow \mathbb{R} is homogenous of degree p if, for every \mathbf{x} \in \mathbb{R}^n and every a>0,
f(a\mathbf{x}) = a^pf(\mathbf{x}).
Show that, if f is homogenous, then \mathbf{x} \cdot \nabla f(\mathbf{x}) = p...