gadje, as I thought, he is talking about an infinitesimal
change in entropy (or assuming the temperatures of both the stone and the water never change, but that's a bit silly). Maybe it is more clear if the delta's in his formula would be written as "d"'s? dS = dQ/T is the formula for infinitesimal entropy change.
And you are right that entropy is a state variable independent of the path, BUT! Q is not a state variable and IS dependent on your path, and because if you want to calculate the entropy change in this way, with the use of Q, you HAVE to see how it happens. To make my point clear:
Imagine a gas in half an isolated container (shielded by a membrane). The other half is pure vacuum. You puncture the membrane and the gas freely expands into the other half. Q = 0 because the container is isolated. So dS = dQ/T = 0, but this formula is simply wrong because it's only for cases where it can be seen as reversible, and a free expansion of a gas is irreversible. The dS = dQ/T is a VERY nasty formula and I heavily dislike it, but it's practical so you better learn to deal with it :(
Luckily for gases you can derive (without too much trouble) some other formula's which don't contain variables that are not state variables, making your idea about "only the initial and final values matter" true. Sadly, Q is very dependent on the path.
As an extra: what if you want to calculate the entropy change of the gas filling half the container? Well, since you are right and S is a state variable, you can imagine any process and measure the
change in entropy that way. Wait, didn't I just contradict myself? Well no, because if you choose another path, Q will also change, an example:
Imagine you let the gas expand by doing work on a piston very slowly while staying at a constant temperature in a non-isolated container. It can be proven that this kind of expansion IS reversible. The work done by the gas on the piston as it fills the other half of the container is nRTln(V
f/
i) = nRTln(2) with T the constant temperature of the gas. Now, since for an ideal gas E is a function of T and T is constant, E is constant. The first law of Td tells you dE = dQ - dW (with dW the work done by the gas, if you define it as the work done by the environment, it becomes a plus). So 0 = dQ - dW <=> dQ = dW <=> Q = W. You know W = nRTln(2) and since THIS path is reversible, you can use the formula dS = dQ/T => (constant T) S = Q/T = W/T = nRTln(2)/T = nRln(2)
So if a gas expands into vacuum to twice its volume, the entropy change is nRln(2) :)
I hope this helps?