sure, thanks!
so i get the partial derivs:
f(x,y) = e^2
fx(x,y) = 2e^2
fy(x,y) = 2e^2
fxx(x,y) = 4e^2
fxy(x,y) = 4e^2
fyy(x,y) = 4e^2
I get my linear approx:
L1,1(x,y) = 2ex^2+2ey^2-3e^2
so then, by Taylor:
|e^(x^2 + y^2) - (2ex^2+2ey^2-3e^2)| = 1/2[fxx(1,1) x^2 + 2fxy(1,1) xy +...