So the likelihood function is (p/6)*(1-(p-1)/5) 1{p=1,...,5}. The prior function of p is then 1/7 1{p=0,1,...,6}
Then \Pi(p|BW) = (1/7*(p/6)*(1-(p-1)/5)1{p=1,...,5})/(\sum1/7*(p/6)*(1-(p-1)/5))
This I solved as: \Pi(p|BW) = 6/7*(p/6)*(1-(p-1)/5)1{p=1,...,5}
So, that's the posterior...