# Recent content by Markus Kahn

1. ### I How to determine matching coefficient in Effective Field Theory?

Assume that I have the Lagrangian $$\mathcal{L}_{UV} =\frac{1}{2}\left[\left(\partial_{\mu} \phi\right)^{2}-m_{L}^{2} \phi^{2}+\left(\partial_{\mu} H\right)^{2}-M^{2} H^{2}\right] -\frac{\lambda_{0}}{4 !} \phi^{4}-\frac{\lambda_{2}}{4} \phi^{2} H^{2},$$ where ##\phi## is a light scalar field...

4. ### Mass correction in ##\phi^4##-theory

@vanhees71 Thanks a lot for the explanations and I will be sure to check out your lecture notes! Just as a quick check, the issue is that I basically conflated the following, right? i.e. I assumed that ##\phi^4## has this one extra loop diagram that appears due to a ##\phi^3## interaction...
5. ### Mass correction in ##\phi^4##-theory

Alright, this makes sense. Then we have $$m_{\text{ren}}^2=m^2[1+I(m_{\text{ren}}^2)] \approx m^2[1+I(m^2)].$$ When exactly did that happen? Where in post #1 did I make a mistake so that I ended up in ##\phi^3## theory?

9. ### Conservation law for FRW metric

My attempt: Realize we can work in whatever coordinate system we want, therefore we might as well work in the rest frame of the fluid. In this case ##u^a=(c,\vec{0})##. The conservation law reads ##\nabla^a T_{ab}=0##. Let us pick the Levi-Civita connection so that we don't have to worry about...
10. ### Covariant derivative and the Stress-enegery tensor

Perfect, thanks a lot for checking and looking up the references!