Covariant derivative and the Stress-enegery tensor

Markus Kahn
Messages
110
Reaction score
14
Homework Statement
Let ##\phi## be a scalar field that obeys the wave equation, i.e. ##\nabla_a\nabla^a\phi = 0##. How do you need to chose the constant ##C## for the Stress energy tensor
$$T_{a b}=\nabla_{a} \phi \nabla_{b} \phi-\frac{C}{2} g_{a b} \nabla_{c} \phi \nabla^{c} \phi$$
to be conserved, i.e. satisfy ##\nabla_a T^{ab}=0##?
Relevant Equations
All given in the question.
My try:
$$
\begin{align*}
\nabla^a T_{ab}
&= \nabla^a \left(\nabla_{a} \phi \nabla_{b} \phi-\frac{C}{2} g_{a b} \nabla_{c} \phi \nabla^{c} \phi\right)\\
&\overset{(1)}{=} \underbrace{(\nabla^a\nabla_{a} \phi)}_{=0} \nabla_{b} \phi + \nabla_{a} \phi (\nabla^a\nabla_{b} \phi)-\frac{C}{2} \underbrace{(\nabla^ag_{a b})}_{=0} \nabla_{c} \phi \nabla^{c} \phi~ \underbrace{ - \frac{C}{2} g_{a b} (\nabla^a\nabla_{c} \phi) \nabla^{c} \phi -\frac{C}{2} g_{a b} \nabla_{c} \phi (\nabla^a \nabla^{c} \phi)}_{= Cg_{ab}(\nabla^a\nabla_{c} \phi) \nabla^{c} \phi }\\
&= \nabla_{a} \phi (\nabla^a\nabla_{b} \phi) - Cg_{ab}(\nabla^a\nabla_{c} \phi) \nabla^{c} \phi\\
&\overset{(2)}{=} \nabla_{a} \phi (\nabla^a\nabla_{b} \phi) - C\nabla_{a} \phi(\nabla_b\nabla^a \phi)\\
&= \nabla_{a} \phi [\nabla^a\nabla_{b} \phi - C\nabla_b\nabla^a \phi],
\end{align*}
$$
where in ##(1)## I assumed we are working with the Levi-Civita connection (i.e. ##\nabla_a g_{bc}=0##) and the fact that ##\phi## satisfies the wave equation. In ##(2)## I just relabeled the indices and contracted the metric with the connection.

This is where I'm stuck. I'm not really sure how to proceed from here. I thought that one could maybe make use of the fact that the covariant derivative acts especially nicely on scalar fields, i.e.
$$\nabla _a \phi = \partial_a \phi\quad \Longrightarrow \quad\nabla_b \nabla_a \phi = \partial_b\partial_a\phi - \Gamma^{k}_{ab}\partial_k \phi,$$
we modify the statement slightly to our case, i.e.
$$\nabla_a\nabla^b\phi = \nabla_a (g^{bc}\nabla_c\phi) = g^{cb} \nabla_a\nabla_c\phi = g^{cb}(\partial_c\partial_a\phi - \Gamma^{k}_{ac}\partial_k \phi).$$
This then results in
$$
\begin{align*}
\nabla^a T_{ab}
&= \nabla_{a} \phi [\nabla^a\nabla_{b} \phi - C\nabla_b\nabla^a \phi]\\
&=\nabla_{a} \phi [g^{ab}(\partial_b\partial_c\phi - \Gamma^{k}_{cb}\partial_k \phi)- C g^{ab}(\partial_c\partial_b\phi - \Gamma^{k}_{bc}\partial_k \phi) ]\\
&\overset{C=1}{=} \nabla_a \phi g^{ab}[ \underbrace{[\partial_b,\partial_c]}_{=0}\phi + \underbrace{(\Gamma^k_{bc}-\Gamma^k_{cb})}_{=0}\phi ]\\
&=0,
\end{align*}
$$
where the Christoffel-symbols cancel since we chose the Levi-Civita connection, i.e. a torsion-free connection.
So the result would be ##C=1##... I'm really skeptical about this, so I would appreciate if someone could take a look at it and confirm that I'm not doing nonsense or give me a hint where I went wrong.
 
Physics news on Phys.org
Your work looks good to me except for a typo in the second line below. The ##g^{ab}## factors in this line should be ##g^{ac}##. But, you can see that your result still follows.
Markus Kahn said:
$$
\begin{align*}
\nabla^a T_{ab}
&= \nabla_{a} \phi [\nabla^a\nabla_{b} \phi - C\nabla_b\nabla^a \phi]\\
&=\nabla_{a} \phi [g^{ab}(\partial_b\partial_c\phi - \Gamma^{k}_{cb}\partial_k \phi)- C g^{ab}(\partial_c\partial_b\phi - \Gamma^{k}_{bc}\partial_k \phi) ]\\
\end{align*}
$$

Why are you skeptical that ##C = 1##?
 
Last edited:
  • Like
Likes Markus Kahn
TSny said:
Why are you skeptical that ##C = 1##?
Thanks for spotting the typo. I'm rather new to this entire GR-formalism, i.e. the covariant derivatives, etc., so I was just a bit unsure if I'm really doing operations that are permitted. Also, ##C=1## seemed a bit odd in the first moment, but if you think this works, then I'm happy!
 
Looks like you are quite proficient with the manipulations.

C = 1 makes the overall coefficient equal to 1/2 in the last term of the expression for the stress energy tensor. This agrees with what you will find in various field theory and GR texts. For example, equation (9.1.16) here or equation (3.27) here with ##m## set to zero.
 
  • Like
Likes Markus Kahn
TSny said:
C = 1 makes the overall coefficient equal to 1/2 in the last term of the expression for the stress energy tensor. This agrees with what you will find in various field theory and GR texts. For example, equation (9.1.16) here or equation (3.27) here with ##m## set to zero.
Perfect, thanks a lot for checking and looking up the references!
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top