Generalized solutions for the smallest Euclidean norm

crazygrey
Messages
7
Reaction score
0
Hi folks,

I have to find the generalized solution for the following Ax=y :

[1 2 3 4;0 -1 -2 2;0 0 0 1]x=[3;2;1]

The rank of A is 3 so there is one nullity so the generalized solution is:

X= x+alpha.n (where alpha is a constant , and n represents the nullity)

I found the solution to be:

X= [-1;0;0;1]+ alpha [1;-2;1;0] which is a non-unique solution.

I need to find (alpha) so that the generalized solution, i.e, the eigenvector has the smallest Euclidean norm

Thanks
 
Physics news on Phys.org
Any help ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top