Critical Exponents for Quantum Phase Transitions

ianyappy
Messages
11
Reaction score
0
Hi All, I'm doing an undergraduate project regarding QPTs for some variation of a AF Heisenberg hamiltonian. I'm a little confused about the change in relations between the critical exponents for a QPT. Some books/papers state that the quantum system in D dimensions is mapped to a classical D + 1 dimension system at T = 0. Yet they also say that in the finite-size scaling laws, we have to change D to D + z, where z is the dynamic critical exponent. So does that mean that the universality class of the QPT is in Some D + z classical system, but beyond the critical parameter, it appears like some D + 1 classical system? Is there some kind of contradiction between these two statements, or am I missing something? I'm afraid I'm not entirely familiar with the subject so I kind of assume universality class and mapping to a new classical system are kind of the same thing. Would appreciate any help with thanks :)
 
Physics news on Phys.org
The statements you mention are actually not contradictory. The mapping from a quantum system to a classical system in one higher dimension refers to the fact that at zero temperature, quantum fluctuations are completely suppressed and the critical exponents characterizing the quantum phase transition are exactly the same as those of a classical phase transition in one higher dimension. This is known as the Mermin-Wagner theorem. However, when considering finite-size scaling in a quantum system, dynamic critical exponents become relevant, which means that the universality class of the quantum phase transition is in some D+z classical system, rather than a D+1 system. Hope this helps!
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top