Find all values of x in which the series converges

  • Thread starter Thread starter turbokaz
  • Start date Start date
  • Tags Tags
    Series
turbokaz
Messages
19
Reaction score
0

Homework Statement


Find all values of x for which the series Ʃ (4x+5)^n/2^n converges. (n=0; n→∞)
Answer choices: (3/4,-3/4)
(3/4,7/4)
(-7/4,7/4)
(-5/4,5/4)
(-7/4,-3/4)



Homework Equations






The Attempt at a Solution


I think the answer is -7/4,-3/4. If I remember correctly, there is a test that states that a series converges if the limit goes to 0. Is this correct?
 
Physics news on Phys.org
hi turbokaz! :smile:

(yes, correct answer)

look at it this way …

it's ∑ an where a = (4x+5)/2

so what is the equation for when ∑ an converges? :wink:
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top