Are all irrational numbers rational?

AI Thread Summary
Irrational numbers, such as pi, cannot be expressed as fractions of integers, which defines rational numbers. The discussion highlights a misunderstanding regarding the nature of pi as a ratio of circumference to diameter, emphasizing that this ratio does not yield a fraction of integers. It is clarified that the existence of a rational circle with both rational circumference and diameter is not possible. The conversation also touches on the broader implications of definitions in mathematics. Ultimately, all irrational numbers remain non-rational by their very nature.
Skhandelwal
Messages
400
Reaction score
3
Since pie is the ratio of the circumference of the circle to its diameter, isn't it possible that there exist a fraction for all nonrepeating going on forever decimal values?
 
Mathematics news on Phys.org
Skhandelwal said:
Since pie is the ratio of the circumference of the circle to its diameter, isn't it possible that there exist a fraction for all nonrepeating going on forever decimal values?

Short answer: No.

Tongue-in-cheek answer: Yes, but the fraction would have at least one noninteger.

Longer answer: You're wrongly assuming that a circle with rational circumference and diameter exists.
 
? are all humans non human? are all m ortals immortal? are al...
 
mathwonk said:
? are all humans non human? are all m ortals immortal? are al...

lol :smile:
 
Skhandelwal said:
Since pie is the ratio of the circumference of the circle to its diameter, isn't it possible that there exist a fraction for all nonrepeating going on forever decimal values?
The definition of "rational number" is that it can be written as a fraction with numerator and denominator integers. The "ratio of the circumference of the circle to its diameter" is not a ratio of integers.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top