Firework Color Emissions: Determining Energy of Strontium and Barium Salts

  • Thread starter Thread starter VenomHowell15
  • Start date Start date
AI Thread Summary
The discussion centers on the chemistry of fireworks, specifically the emissions from strontium and barium salts when used in pyrotechnics. Strontium salts emit a red color at 631 nm, while barium salts emit a blue-green color at 493 nm. The main focus is on calculating the energy of these emissions for 1.0 g of each salt, assuming all heat released is converted to light. Participants discuss the appropriate equations for calculating energy, noting that E=mc^2 is not applicable in this context. Instead, they derive the number of moles of each salt and use the frequency of emitted light to calculate the energy per photon using the equation E=hv. The calculations yield approximately 119.8 J for the energy emitted by strontium salts. There is also a clarification regarding the color designation of strontium emission, with a consensus that it should be referred to as red rather than orange.
VenomHowell15
Messages
13
Reaction score
0
1.) In a typical fireworks device, the hat of the reaction between the strong oxidizing agent, such as KCLO4, and an organic compound excites certain salts, which emit specific colours. Strontium salts have an intense emission at 631 nm, and barium salts have one at 493 nm.

Part a was simple enough... Simply what are the colours. Strontium salts are essentially orange, and barium blue-green. Part b is as follows:

What is the energy of these emissions for 1.0g each of the chloride salts of Sr and Ba? Assume that all heat released is converted to light emitted.

I've been scanning through my lecture notes looking for an applicable equation, but E=mc^2 is reserved for nuclear reactions or relativistic rest energy, and I doubt that's what I'm looking for here... But I somewhat doubt doing a heat of formation thing would work here either. Any pointers?
 
Chemistry news on Phys.org
VenomHowell15 said:
1.) In a typical fireworks device, the hat of the reaction between the strong oxidizing agent, such as KCLO4, and an organic compound excites certain salts, which emit specific colours. Strontium salts have an intense emission at 631 nm, and barium salts have one at 493 nm.

Part a was simple enough... Simply what are the colours. Strontium salts are essentially orange, and barium blue-green. Part b is as follows:

What is the energy of these emissions for 1.0g each of the chloride salts of Sr and Ba? Assume that all heat released is converted to light emitted.

I've been scanning through my lecture notes looking for an applicable equation, but E=mc^2 is reserved for nuclear reactions or relativistic rest energy, and I doubt that's what I'm looking for here... But I somewhat doubt doing a heat of formation thing would work here either. Any pointers?

1.0 g of Sr(Cl)2 = 1/(87.6+70.9) = 6.3*10^(-3) mol of Sr

1.0 g of Ba(Cl)2 = 1/(137.3+70.9) = 4.8*10^(-3) mol of Ba

631 nm --> v = frequency = 3*10^8/6.31*10^(-7) = 4.8*10^14 Hz

493 nm --> v = 3*10^8/4.93*10^(-7) = 6.1*10^14 Hz

One photon emitted: E = hv

If every atom emits exactly one photon (I assume the question was meant in this way, but I would control this), then 6.3*10^(-3) mol of Sr atoms = [6.3*10^(-3)]*[6.0*10^23] = 3.78*10^21 Sr atoms would emit:

[3.78*10^21]*hv = [3.78*10^21]*6.6*10^(-34)*4.8*10^14

= 119.8 J of photons

You can do the same with Ba.

Make me know if the question was meant in the way I have assumed.
P.S. I would call the Sr emission "red" not "orange".
 
Last edited:
I want to test a humidity sensor with one or more saturated salt solutions. The table salt that I have on hand contains one of two anticaking agents, calcium silicate or sodium aluminosilicate. Will the presence of either of these additives (or iodine for that matter) significantly affect the equilibrium humidity? I searched and all the how-to-do-it guides did not address this question. One research paper I found reported that at 1.5% w/w calcium silicate increased the deliquescent point by...
Back
Top