I am just learning this, but from what I have heard (not sure this is 100% it), it's the following.
Lie Groups are infinite groups.
Representations are group homomorphisms from G-->GL(V).
We are usually interested in finding out if we can decompose a representation into irreducibles. If there is an invariant subspace for the representation, then it is not irreducible. If there is no invariant subspace, then it is irreducible. Careful: A representation that is not irreducible is NOT necessarily reducible! In order to be reducible, there must be an invariant subspace AND an invariant complement. Then we have a reducible representation.
Conveniently, for every FINITE dimensional group if there exists an invariant subspace, then there exists an invariant complement. We can then decompose the representation into irreducible bits, namely trivial, alternating and standard representations.
Now I don't know much about Lie groups, but it seems to be that they are of the infinite dimensional case, so we cannot necessarily always find an invariant complement to an invariant subspace. A semisimple representation can always be decomposed like the finite dimensional case, so you might want to look for Lie groups that will help you do this...
Then again, I'm just in a class on the basics of the prerequisite material to all this, so I don't know much. But our text gets to this whole topic, with the first part on finite groups and the latter part on the Lie groups. It's called "Representation Theory: A First Course", by Fulton and Harris. You might check it out, since it's bound to be much more accurate then I am...