Degenerate Bosonic pressure...
The eigenenergy of a particle of mass m in a one dimensional infinite square well of length L is equivalent to the Fermi energy of a degenerate neutron, which is used to determine neutron degeneracy pressure in a neutron star Fermi sphere. Therefore, the infinite square well is the basis of all models of neutron stars. The Fermi energy is the Fermionic energy of fermions, in the case of bosons, it is the Bosonic energy of a Boson.
Fermi energy = eigenenergy:
\boxed{E_f = E_n}
Fermionic eigenenergy:
E_f =\frac{\hbar^2 \pi^2}{2m L^2} n_f^2
1D infinite square well eigenenergy:
E_n = \frac{\hbar^2 \pi^2}{2 m L^2} n^2 \,
Eigenenergy for a relativistic massless particle situated in a 1D infinite square well:
E_n = \frac{\pi \hbar c n}{L}
n_b = \left( \frac{3 N}{\pi} \right)^{\frac{1}{3}}
Integration by substitution:
E_n(N) = \frac{\pi \hbar c}{L} \left( \frac{3 N}{\pi} \right)^{\frac{1}{3}}
Integration by substitution:
E_t = {\int_0}^{N_0} E_n(N) dN = {\int_0}^{N_0} \frac{\pi \hbar c}{L} \left( \frac{3 N}{\pi} \right)^{\frac{1}{3}} dN
E_t = \frac{3^{\frac{1}{3}} \pi^{\frac{2}{3}} \hbar c}{L} {\int_0}^{N_0} N^{\frac{1}{3}} dN = \frac{3^{\frac{1}{3}} \pi^{\frac{2}{3}} \hbar c}{L} \left( \frac{3 N_0^{\frac{4}{3}}}{4} \right) = \frac{3^{\frac{4}{3}} \pi^{\frac{2}{3}} \hbar c}{4 L} N_0^{\frac{4}{3}}
Total Bosonic eigenenergy:
\boxed{E_t = \frac{3^{\frac{4}{3}} \pi^{\frac{2}{3}} \hbar c}{4 L} N_0^{\frac{4}{3}}}
The elimination of L in favor of V:
\boxed{L = V^{\frac{1}{3}}}
\boxed{E_t = \frac{3^{\frac{4}{3}} \pi^{\frac{2}{3}} \hbar c N_0^{\frac{4}{3}}}{4 V_0^{\frac{1}{3}}}}
Degenerate Bosonic pressure:
P_b = - \frac{\partial E_t}{\partial V}
Integration by differentiation substitution:
P_b = - \frac{3^{\frac{4}{3}} \pi^{\frac{2}{3}} \hbar c N_0^{\frac{4}{3}}}{4} \left( \frac{d V_0^{- \frac{1}{3}}}{dV} \right) = - \frac{3^{\frac{4}{3}} \pi^{\frac{2}{3}} \hbar c N_0^{\frac{4}{3}}}{4} \left( - \frac{1}{3 V_0^{\frac{4}{3}}} \right) = \frac{3^{\frac{1}{3}} \pi^{\frac{2}{3}} \hbar c N_0^{\frac{4}{3}}}{4 V_0^{\frac{4}{3}}}}
Degenerate Bosonic pressure:
\boxed{P_b = \frac{3^{\frac{1}{3}} \pi^{\frac{2}{3}} \hbar c N_0^{\frac{4}{3}}}{4 V_0^{\frac{4}{3}}}}}
Degenerate Bosonic density:
\rho_0 = \frac{M_0}{V_0}
Degenerate Bosonic pressure:
\boxed{P_b = \frac{3^{\frac{1}{3}} \pi^{\frac{2}{3}} \hbar c \rho_0^{\frac{4}{3}}}{4}}
[/Color]
Reference:
http://en.wikipedia.org/wiki/Particle_in_a_box"
http://en.wikipedia.org/wiki/Fermi_energy"
https://www.physicsforums.com/showpost.php?p=1787244&postcount=11"
https://www.physicsforums.com/showpost.php?p=1787309&postcount=10"