Hermite polynomial and transformation

KFC
Messages
477
Reaction score
4
In the chapter of quantum harmonic oscillator, we use the Hermite polynomial a lot. And the Fourier transformation of Hermite polynomial (in wavenumber space) gives

\mathcal{F} \left\{ \exp (-x^2/2) H_n(x) \right\} = (-i)^n \exp (-k^2/2) H_n(k)

Now I need to find the similar result in terms of momentum p, I know the relation between wavenumber and momentum is

p = \hbar k

But I still cannot transform above result to that written in terms of p. Any clue?
 
Physics news on Phys.org
If you FT a product of two functions of x, you should get a convolution in k space, not a simple product.
 
clem said:
If you FT a product of two functions of x, you should get a convolution in k space, not a simple product.

But I am talking about a special case: Hermite polynomial, so in this case, the above equation is correct. They are just simple product in k space
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top