harrylin said:
There must be a misunderstanding here: Lorentz's ether corresponds to an unpreferred inertial frame. I did elaborate on that issue (and I won't again, as it's not the topic).
Of course it's the topic. Lorentz himself used (for good reasons) the expression "preferred", in so far as clocks at rest in this aether indicate the "true" time and an "absolute" simultaneity (see the numerous quotes above, where Lorentz used exactly this terminology). Here is another quote by Lorentz (from 1909), where he also elaborated on the conceptual differences between LET and SR: pp. 229-230,
http://www.archive.org/details/electronstheory00lorerich
Lorentz1909 said:
I cannot speak here of the many highly interesting applications which Einstein has made of this principle. His results concerning electromagnetic and optical phenomena [..] agree in the main with those which we have obtained in the preceding pages, the chief difference being that Einstein simply postulates what we have deduced, with some difficulty and not altogether satisfactorily, from the fundamental equations of the electromagnetic field. By doing so, he may certainly take credit for making us see in the negative result of experiments like those of Michelson, Rayleigh and Brace, not a fortuitous compensation of opposing effects, but the manifestation of a general and fundamental principle.
Yet, I think, something may also be claimed in favour of the form in which I have presented the theory. I cannot but regard the ether, which can be the seat of an electromagnetic field with its energy and its vibrations, as endowed with a certain degree of substantiality, however different it may be from all ordinary matter. In this line of thought, it seems natural not to assume at starting that it can never make any difference whether a body moves through the ether or not, and to measure distances and lengths of time by means of rods and clocks having a fixed position relatively to the ether.
It would be unjust not to add that, besides the fascinating boldness of its starting point, Einstein's theory has another marked advantage over mine. Whereas I have not been able to obtain for the equations referred to moving axes exactly the same form as for those which apply to a stationary system, Einstein has accomplished this by means of a system of new variables slightly different from those which I have introduced. I have not availed myself of his substitutions, only because the formulae are rather complicated and look somewhat artificial, unless one deduces them from the principle of relativity itself.
You also write:
harrylin said:
It appears that people who more openly proclaim their mistakes and weaknesses are punished for their honesty. Due to lack of rigour (instead of "proceeding more systematically") Lorentz's electromagnetic formulas "remained encumbered with certain terms which should have disappeared".
Lorentz clearly said, that "true" and "local time" are not equally valid. And this was one of the reasons that he didn't "proceed more systematically". So it's not simply an "error" - it's a conceptual issue that hindered Lorentz to achieve complete Lorentz covariance. Here again the quote: http://en.wikisource.org/wiki/Two_Papers_of_Henri_Poincar%C3%A9_on_Mathematical_Physics
Lorentz1914 said:
The formulas (4) and (7) are not in my memoir of 1904. Because I had not thought of the direct way which led there, and because I had the idea that there is an essential difference between systems x, y, z, t and x',y',z',t'.
Do you still (like the generous Poincaré) want to downplay this issue?
harrylin said:
Generous perhaps, but basically correct since the Lorentz transformations follow directly from Lorentz-1904.
According to this argument, Joseph Larmor would be the inventor of SR, who already in 1897 and 1900 had the complete transformation. Now, the reason why neither Larmor nor Lorentz is credited with relativity, simply lies in the fact, that they didn't possesses the correct interpretation and thus were unable to derive all possible consequences. For example, Larmor only restricted the application of the transformation to second order effects, neglecting all others. And for Lorentz, t and t' were "essentially different", which (as explained by himself) hindered him to achieve full Lorentz covariance.
harrylin said:
And with the "physical meaning" of time dilation I had his 1899 paper in mind:
-
http://en.wikisource.org/wiki/Simpl...rical_and_Optical_Phenomena_in_Moving_Systems
A mere calculation aid cannot affect such a physical vibration time.
You have to explain this to Lorentz, not to me.

Look, the problem is that we have to be careful, when we speak about "physical" time when referring to Lorentz's application of this time variable, since Lorentz himself said in 1909, 1913, 1914, 1927 etc.., that time t' was only a mathematical artifice, which includes also the "modified" local time (including time dilation) from 1899 and 1904...
harrylin said:
Thus I'll abstain from further commenting on aspects that are not perfectly on topic.
The topic's title is "Did Lorentz or Einstein theoretically derive special relativity?". All of the quotes I brought show, that Lorentz did not regard himself as having derived SR. And this is in agreement with the modern interpretation by most reputable Historians of Science (Holton, Pais, Miller, Stachel, Janssen, etc.) Off-topic are your references to Einstein's non-technical aether papers and lectures, which were ignored in any physics-textbooks in the last 70 years, while his initial judgments from 1905-1909 are still valid and accepted.
Regards,