Curie point for ferromagnetic materials

Low-Q
Gold Member
Messages
283
Reaction score
9
Hi,

I have searched the web for a graph that shows the ferromagnetic properties of a metal like iron or nickel as they warms up to the Curie temperature - when the metals becomes non-ferromagnetic. I cannot find any good images or graphs that shows this very clear. I have been told that the Curie point is very sharp, meaning that at temperatures slightly under or over the Curie temperature makes the metal ferromegnetic or not. Can someone please help to explain this to me?

Br.

Vidar
 
Physics news on Phys.org
There is a sketch of the magnetization versus temperature for a ferromagnetic material here:
http://www.irm.umn.edu/hg2m/hg2m_b/hg2m_b.html
Scroll down a little, to get to ferromagnetism.
An experimental image cuve for nickel is contained in this graph:
http://media.web.britannica.com/eb-media/68/268-004-A2511D3C.gif

The Curie point is "sharp" in the sense that is the point of a phase transition. It is somewhat similar to the melting point. Above it the material is liquid, below it it's solid.

Here it is the ferro- to para- magnetic phase transition. However this is a so called "second order" phase transition whereas the melting is "first order". It means (between other things) that the order parameter (magnetization) does not have a jump over the transition point. It goes to zero when temperature is increased towards Tc and remains zero on the high temperature side of the transition.
 
Last edited:
Thanks for the reply.

Is it possible to make a relatively high efficient motor of ferromagnetic materials if the material is close to its Curier temperature so just small changes in temperature (which require "small" energy input) will make a "Curier engine" to work?
Say the engine is inside an insolated box where the temperature is possible to be kept high.

I am not talking about over unity, but another way to make an engine.

br.

Vidar
 
Low-Q said:
Thanks for the reply.

Is it possible to make a relatively high efficient motor of ferromagnetic materials if the material is close to its Curier temperature so just small changes in temperature (which require "small" energy input) will make a "Curier engine" to work?
Say the engine is inside an insolated box where the temperature is possible to be kept high.

I am not talking about over unity, but another way to make an engine.

br.

Vidar

The "high" temperature is not really a problem. There are ferromagnetic materials with low Curie temperature. Not very common I guess as the interest is in having it high enough to avoid demagnetization. Gadolinium is an example (TC less than 300 K).
Regarding the motor, I don't know, there are many things to consider.
 
Low-Q said:
Thanks for the reply.

Is it possible to make a relatively high efficient motor of ferromagnetic materials if the material is close to its Curier temperature so just small changes in temperature (which require "small" energy input) will make a "Curier engine" to work?
Say the engine is inside an insolated box where the temperature is possible to be kept high.

I am not talking about over unity, but another way to make an engine.

br.

Vidar

Get some Gadolinium metal at Ebay, it is relatively cheap (for it being a rare earth) and has its Curie point at about 20 deg. Celsius. Nice toy!
 
From the BCS theory of superconductivity is well known that the superfluid density smoothly decreases with increasing temperature. Annihilated superfluid carriers become normal and lose their momenta on lattice atoms. So if we induce a persistent supercurrent in a ring below Tc and after that slowly increase the temperature, we must observe a decrease in the actual supercurrent, because the density of electron pairs and total supercurrent momentum decrease. However, this supercurrent...
Hi. I have got question as in title. How can idea of instantaneous dipole moment for atoms like, for example hydrogen be consistent with idea of orbitals? At my level of knowledge London dispersion forces are derived taking into account Bohr model of atom. But we know today that this model is not correct. If it would be correct I understand that at each time electron is at some point at radius at some angle and there is dipole moment at this time from nucleus to electron at orbit. But how...
Back
Top