Derivation of sagging expression

AI Thread Summary
The sagging expression for a centrally loaded bar is derived as δ = W l^3/(4bd^3Y), where Y is the Young's modulus. The discussion emphasizes the use of calculus for this derivation, referencing the Euler–Bernoulli beam theory, particularly the section on three-point bending. It notes that shear force remains constant at half the central load and changes sign at the midpoint. The bending moment is described as varying linearly, reaching its maximum at the center of the beam. Understanding these principles is crucial for accurately deriving the sagging expression.
Alpharup
Messages
226
Reaction score
17
A bar of length l, breadth b, and depth d when loaded at the centre by a load W sags by
an amount given by
δ = W l^3/(4bd^3Y). Here Y is the young's modulus of the wire. My textbook says that we have to use little calculus to derive this expression. Can you please derive this?
 
  • Like
Likes mohamed hassan
Physics news on Phys.org
It gets pretty complicated. But take a look at the Wikipedia article "Euler–Bernoulli beam theory", especially the section "Three-point bending" and see if that is any help.

"The shear is constant in absolute value: it is half the central load, P/2. It changes sign in the middle of the beam. The bending moment varies linearly from one end, where it is 0, and the center where its absolute value is PL/4. The deformation of the beam is described by a polynomial of third degree over a half beam (the other half being symmetrical)."
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Thread 'Recovering Hamilton's Equations from Poisson brackets'
The issue : Let me start by copying and pasting the relevant passage from the text, thanks to modern day methods of computing. The trouble is, in equation (4.79), it completely ignores the partial derivative of ##q_i## with respect to time, i.e. it puts ##\partial q_i/\partial t=0##. But ##q_i## is a dynamical variable of ##t##, or ##q_i(t)##. In the derivation of Hamilton's equations from the Hamiltonian, viz. ##H = p_i \dot q_i-L##, nowhere did we assume that ##\partial q_i/\partial...
Back
Top