- 24,753
- 794
http://arxiv.org/abs/1201.4151
Group field cosmology: a cosmological field theory of quantum geometry
Gianluca Calcagni, Steffen Gielen, Daniele Oriti
(Submitted on 19 Jan 2012)
Following the idea of a field quantization of gravity as realized in group field theory, we construct a minisuperspace model where the wavefunction of canonical quantum cosmology (either Wheeler-DeWitt or loop quantum cosmology) is promoted to a field, the coordinates are minisuperspace variables, the kinetic operator is the Hamiltonian constraint operator, and the action features a nonlinear and possibly nonlocal interaction term. We discuss free-field classical solutions, the quantum propagator, and a mean-field approximation linearizing the equation of motion and augmenting the Hamiltonian constraint by an effective term mixing gravitational and matter variables. Depending on the choice of interaction, this can reproduce, for example, a cosmological constant, a scalar-field potential, or a curvature contribution.
14 pages, 2 figures
http://arxiv.org/abs/1201.3969
Breaking the uniqueness of the Shape Dynamics Hamiltonian
Henrique Gomes
(Submitted on 19 Jan 2012)
In Gomes 2011, a linear method of solving a particular set of Lichnerowicz-type equations through the implicit function theorem was sketched in order to implicitly construct Shape Dynamics' global Hamiltonian and eliminate second class constraints. This method was completely laid out, and in Gomes 2011 it was used for extending Shape Dynamics (SD) to the non-vacuum case, showing how other fields are coupled to the theory. In the latter paper it was noticed that, unlike the vacuum case, the use of such methods yielded puzzling bounds on the density of some types of fields. Here we show that the original SD cannot be extended beyond such bounds, but that a slight modification of the original can withstand any type of coupling. When the bound is broken, the theory does not come equipped with a single Hamiltonian as in vacuum SD, but with a finite set of weakly commuting Hamiltonians, which we describe.
14 pages
http://arxiv.org/abs/1110.6350
Evolution of Primordial Black Holes in Loop Quantum Gravity
Debabrata Dwivedee, Bibekananda Nayak, Mubasher Jamil, Lambodar Prasad Singh
(Submitted on 28 Oct 2011 (v1), last revised 24 Nov 2011 (this version, v2))
In this work, we study the evolution of Primordial Black Holes within the context of Loop Quantum Gravity. First we calculate the scale factor and energy density of the universe for different cosmic era and then taking these as inputs we study evolution of primordial black holes. From our estimation it is found that accretion of radiation does not affect evolution of primordial black holes in loop quantum gravity even though a larger number of primordial black holes may form in early universe in comparison with Einstein's or scalar-tensor theories.
8 pages, 1 figure
brief mention:
http://arxiv.org/abs/1201.4147
Are OPERA neutrinos faster than light because of non-inertial reference frames?
Claudio Germana
(Submitted on 19 Jan 2012)
Recent results from the OPERA experiment reported a neutrino beam traveling faster than light. The experiment measured the neutrino time of flight (TOF) over a baseline from the CERN to the Gran Sasso site. The neutrino beam arrives 60 ns earlier than a light ray would do. Because the result has an enormous impact on science, it might be worth double-checking the time definitions with respect to the non-inertial system in which the neutrino travel time was measured. Potential problems in the OPERA data analysis connected with the definition of the reference frame and time synchronization are emphasized. We aim to investigate the synchronization of non-inertial clocks on Earth by relating this time to the proper time of an inertial observer at Solar System Barycenter(SSB). The Tempo2 software was used to time-stamp events observed on the geoid with respect to the SSB inertial observer time. Neutrino results from OPERA might carry the fingerprint of non-inertial effects. The CERN-Gran Sasso clock synchronization is accomplished by applying corrections that depend on special and general relativistic time dilation effects at the clocks, depending on the position of the clocks in the solar system gravitational well. As a consequence, TOF distributions are centered on values shorter by tens of ns than expected, integrating over a period from April to December, longer if otherwise. It is worth remarking that the OPERA runs have always been carried out from April/May to November. If the analysis by Tempo2 holds for the OPERA experiment, the excellent measurement by the OPERA collaboration will turn into a proof of the General Relativity theory in a weak field approximation. The analysis presented here is falsifiable because it predicts that performing the experiment from January to March/April, the neutrino beam will be detected to arrive 50 ns later than light.
5 pages, 4 figures, accepted for publication in Astronomy and Astrophysics Letters
Last edited: