Gibbs free energy doesn't increase (constant T and P) - proof doesn't seem right

AI Thread Summary
The discussion centers on the relationship between work done (ΔW), Helmholtz Free Energy (ΔF), and Gibbs Free Energy (ΔG) during isothermal transformations. It highlights the equation ΔG = ΔF + ΔW and questions the assumption that ΔW ≤ -ΔF when ΔW is stated to be greater than or equal to ΔF. The conversation also explores the implications of constant temperature and pressure on Gibbs Free Energy, emphasizing that it never increases in such conditions. Additionally, it presents a method to demonstrate that the system evolves toward maximizing entropy, which correlates with minimizing Gibbs Free Energy. The analysis concludes that understanding these relationships is crucial for thermodynamic processes.
Silversonic
Messages
121
Reaction score
1
First my notes discover that for an isothermal transformation;

ΔW ≥ ΔF

Where W is the work done and F is the Helmholtz Free Energy, F = E - TS.


Then it defines the Gibbs free Energy;

G = F + PV

"For a system at constant temperature and pressure, G never increases";

So ΔG = ΔF + Δ(PV) = ΔF + PΔV = ΔF + ΔW


Then it says "We already know ΔW ≤ -ΔF and therefore ΔW + ΔF = ΔG ≤ 0".

But how can we assume ΔW ≤ -ΔF from the fact that ΔW ≥ ΔF? If ΔW is positive and |ΔW| ≥ |ΔF| then this assumption does not work, and also I have nothing that indicates to me the change in the work done is either positive or negative. I can't seem to show how this proof was meant to work otherwise though, any help?
 
Physics news on Phys.org
Silversonic said:
First my notes discover that for an isothermal transformation;

ΔW ≥ ΔF

Where W is the work done and F is the Helmholtz Free Energy, F = E - TS.


Then it defines the Gibbs free Energy;

G = F + PV

"For a system at constant temperature and pressure, G never increases";

So ΔG = ΔF + Δ(PV) = ΔF + PΔV = ΔF + ΔW


Then it says "We already know ΔW ≤ -ΔF and therefore ΔW + ΔF = ΔG ≤ 0".

But how can we assume ΔW ≤ -ΔF from the fact that ΔW ≥ ΔF? If ΔW is positive and |ΔW| ≥ |ΔF| then this assumption does not work, and also I have nothing that indicates to me the change in the work done is either positive or negative. I can't seem to show how this proof was meant to work otherwise though, any help?



From what I can see...

dW = -PdV + \mu dN
dE = dW + dQ = dW + T dS

At constant temperature...

d F = d E - T dS = dW
so
ΔF = ΔW.

I would be interested in knowing how you show
ΔF ≤ ΔW



Also, there is an interesting way (which may be along the same lines as your notes) to show that the Gibbs free energy never increases in processes at constant temperature and pressure.

We note that in all processes where a system is in contact with a pressure and temperature reservoir, the system will evolve toward a state which maximizes the entropy of both system plus reservoir.

dS^{s+r} = dS^{s} + dS^{r} ≥0
dS^{s} = (1/T^{s})*(dU^{s} + P^{s} dV^{s} - \mu^{s} dN^{s})

With these two expressions and knowing that the temperature and pressure are the same for both system and reservoir, you can show that
dS^{s+r} = -(1/T^{s})*dG^{s}
so that since the system inexorably tends to maximize the entropy of the universe (universe = system plus reservoir), it must also inexorably tend to minimize its Gibbs free energy for processes at constant temperature and pressure.

Anywhoo, that's why I'd say the Gibbs free energy of the system cannot increase for processes at constant temperature and pressure.

-James
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...
Thread 'Recovering Hamilton's Equations from Poisson brackets'
The issue : Let me start by copying and pasting the relevant passage from the text, thanks to modern day methods of computing. The trouble is, in equation (4.79), it completely ignores the partial derivative of ##q_i## with respect to time, i.e. it puts ##\partial q_i/\partial t=0##. But ##q_i## is a dynamical variable of ##t##, or ##q_i(t)##. In the derivation of Hamilton's equations from the Hamiltonian, viz. ##H = p_i \dot q_i-L##, nowhere did we assume that ##\partial q_i/\partial...
Back
Top