Why do strings in black holes not collapse to a singularity?

  • Thread starter Thread starter brooknorton
  • Start date Start date
  • Tags Tags
    Collapse
brooknorton
Messages
1
Reaction score
0
I've read that string theory suggests that black holes may be stringy fuzzballs without a singularity at the center. Instead, strings pile up all the way to the event horizon. My understanding of non-stringy black holes is that the gravitational compressive force overcomes all known repulsive forces (such as electrostatic repulsion between particles) and so the compressed matter collapses with nothing stopping an indefinitely denser collapse, resulting in a sigularity at the black hole center. Now the fuzzball conjecture posits a stringy ball that extends to the event horizon. My question is, why don't the strings collapse to a singularity, just like non-stringy matter does? Don't the strings have the same mass and gravitational effect as their non-stringy counterpart-particles (eg - a neutron represented by a string, or as a particle/wave, still has the same mass and gravitational attraction)? Don't stringy particles have the same repulsive forces as their non-stringy counterparts? What allows a fuzzball to build matter to the event horizon without collapse?
 
Physics news on Phys.org
Apparently, there is no traditional horizon in the fuzzball picture.

Mathur, The information paradox: A pedagogical introduction: "Why doesn’t the energy of the Schwarzschild hole all fall into the origin at r = 0? Consider the simpler case of a single string in flat space. It would seem that a string in the shape of a circle must shrink to a point under its tension so there should be no extended string states. But of course we can get extended states: the string profile is not circularly symmetric, and while each segment of the string is indeed trying to shrink, the whole exited string maintains a nonzero size in its evolution. Similarly, the nonextremal microstates are not spherically symmetric, and they cannot be sliced in a time independent manner. Each part of the geometry is dynamical, and the whole structure maintains a nontrivial structure without generating a traditional horizon."
 
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...

Similar threads

Replies
5
Views
2K
Replies
1
Views
2K
Replies
7
Views
5K
Replies
18
Views
1K
Replies
1
Views
2K
Replies
7
Views
4K
Replies
2
Views
2K
Replies
21
Views
5K
Back
Top