Identity
- 151
- 0
I want to define something like:
A\left(\begin{matrix} x \\ y\end{matrix}\right) = \left(\begin{matrix} 1 & -1 \\ -1 & 1 \end{matrix}\right)\left(\begin{matrix} x \\ y\end{matrix}\right)
B\left(\begin{matrix} x \\ y\end{matrix}\right) = \left(\begin{matrix} 0 & 1 \\ 2 & -1 \end{matrix}\right)\left(\begin{matrix} x \\ y\end{matrix}\right)+\left(\begin{matrix} 1 \\ 1\end{matrix}\right)
And then I want to be able to evaluate compositions such as A \circ B \circ A\left(\begin{matrix} x \\ y\end{matrix}\right) quickly and easily.
Currently I'm using this syntax:
A[x_,y_] = {{1,-1},{-1,1}}.{{x},{y}}
However, when I define such a function, the output is a column vector, not a list, and I can't input a column vector into the next function. How do I do ths?
A\left(\begin{matrix} x \\ y\end{matrix}\right) = \left(\begin{matrix} 1 & -1 \\ -1 & 1 \end{matrix}\right)\left(\begin{matrix} x \\ y\end{matrix}\right)
B\left(\begin{matrix} x \\ y\end{matrix}\right) = \left(\begin{matrix} 0 & 1 \\ 2 & -1 \end{matrix}\right)\left(\begin{matrix} x \\ y\end{matrix}\right)+\left(\begin{matrix} 1 \\ 1\end{matrix}\right)
And then I want to be able to evaluate compositions such as A \circ B \circ A\left(\begin{matrix} x \\ y\end{matrix}\right) quickly and easily.
Currently I'm using this syntax:
A[x_,y_] = {{1,-1},{-1,1}}.{{x},{y}}
However, when I define such a function, the output is a column vector, not a list, and I can't input a column vector into the next function. How do I do ths?