Eigenfunction of a Jones Vector (System)

AI Thread Summary
To solve for the eigenfunction of a 2x2 Jones Vector representing an optical system, first derive the eigenvalue using the determinant equation det(λI - A) = 0. After finding the eigenvalue λ, substitute it into the equation Av = λv, which leads to two equations relating the components v1 and v2 of the eigenvector. The eigenvalue equation allows for a constant multiple of the eigenvector, necessitating a normalization step to fix this constant. When using a specific matrix for a linear polarizer at 45°, the eigenvalue is confirmed as 1, resulting in equal components for the eigenvector, aligning with expected outcomes. Understanding that 'A' is the system matrix and 'v' is the eigenvector clarifies the relationship between these elements in the context of the eigenvalue problem.
KasraMohammad
Messages
18
Reaction score
0
I am trying to find out just how to solve for the eigenfunction given a system, namely the parameters of an optical system (say a polarizer) in the form of a 2 by 2 Jones Vector. I know how to derive the eigenvalue, using the the constituent det(λI -A) = 0, 'A' being the system at hand and 'λ' the eigenvalue. How do you go about solving for the eigenfunction?
 
Physics news on Phys.org
Once you've found λ, you can substitute its value into Av = λv. If you then multiply out the left hand side and equate components, v1 and v2, of v on either side, you'll get two equivalent equations linking v1 and v2. Eiter will give you the ratio v1/v2. This is fine: the eigenvalue equation is consistent with any multiplied constant in the eigenvector. There will be a normalisation procedure for fixing the constant.
 
so I got λ = 1. 'A' I assume is the system matrix or my Jones Vector, which is given as a 2 by 2 matrix. So that makes Av=v, thus A must be 1?? The 'v' values must be the same, but isn't 'v' the eigenfunction itself? The equation Av=v eliminates the 'v' value. What am I doing wrong here?
 
v is the vector and A is the matrix. The matrix isn't a vector, but is an operator which operates on the vector.

Try it with a matrix A representing a linear polariser at 45° to the base vectors. This matrix has all four elements equal to 1/2. This gives eigenvalue of 1, and on substituting as I explained above, shows the two components, v1 and v2, of the vector to be equal, which is just what you'd expect.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...

Similar threads

Back
Top