Noncommuting position variables due to quantum gravity

nabil0
Messages
20
Reaction score
1
I've read that if one wants to quantize gravity , there must be a smallest length scale " The Planck length " . If I want to measure the position of a point particle then in conventional Quantum mechanics I'll find it at the point $(x,y,z)$ at some-time $t$ with an arbitrary momentum but this can't be though in quantum gravity since the smallest length scale that can exist is the Planck scale so the particle must be at a neighbourhood of (x,y,z) of area that's equal to Planck length . So if we measured the X operator to find the eigenvalue x the particle must be spread in the eigenspace of the Y and Z operators that's X,Y,Z are not commuting operators So we must have [X,Y] not equal to zero .
Is this line of reasoning correct ? Have something of this sort been worked out ? It seems that many things in Quantum mechanics should be modified if we want to incorporate gravitational effects
 
Physics news on Phys.org
http://arxiv.org/abs/hep-th/0106048
Noncommutative Field Theory
Michael R. Douglas (Rutgers, IHES), Nikita A. Nekrasov (IHES, ITEP)
We review the generalization of field theory to space-time with noncommuting coordinates, starting with the basics and covering most of the active directions of research. Such theories are now known to emerge from limits of M theory and string theory, and to describe quantum Hall states. In the last few years they have been studied intensively, and many qualitatively new phenomena have been discovered, both on the classical and quantum level.
 
Sounds interesting . What mathematical knowledge required to be able to understand that paper ?
 
Last edited:
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...
https://arxiv.org/pdf/2503.09804 From the abstract: ... Our derivation uses both EE and the Newtonian approximation of EE in Part I, to describe semi-classically in Part II the advection of DM, created at the level of the universe, into galaxies and clusters thereof. This advection happens proportional with their own classically generated gravitational field g, due to self-interaction of the gravitational field. It is based on the universal formula ρD =λgg′2 for the densityρ D of DM...
Back
Top