yungman
- 5,741
- 294
I am studying Coulomb and Lorentz gauge. Lorentz gauge help produce wave equation:
\nabla^2 V-\mu_0\epsilon_0\frac{\partial^2V}{\partial t^2}=-\frac{\rho}{\epsilon_0},\;and\;\nabla^2 \vec A-\mu_0\epsilon_0\frac{\partial^2\vec A}{\partial t^2}=-\mu_0\vec J
Where the 4 dimensional d'Alembertian operator:
\square^2=\nabla^2-\mu_0\epsilon_0\frac{\partial^2}{\partial t^2}
\Rightarrow\;\square^2V=-\frac{\rho}{\epsilon_0},\; and\;\square^2\vec A=-\mu_0\vec J
So the wave equations are really 4 dimensional d'Alembertian equations?
\nabla^2 V-\mu_0\epsilon_0\frac{\partial^2V}{\partial t^2}=-\frac{\rho}{\epsilon_0},\;and\;\nabla^2 \vec A-\mu_0\epsilon_0\frac{\partial^2\vec A}{\partial t^2}=-\mu_0\vec J
Where the 4 dimensional d'Alembertian operator:
\square^2=\nabla^2-\mu_0\epsilon_0\frac{\partial^2}{\partial t^2}
\Rightarrow\;\square^2V=-\frac{\rho}{\epsilon_0},\; and\;\square^2\vec A=-\mu_0\vec J
So the wave equations are really 4 dimensional d'Alembertian equations?
Last edited: