Why are y and y' treated as independent in calculus of variation?

AI Thread Summary
In calculus of variations, y and y' are treated as independent because there is no direct algebraic relationship between a function and its derivative, which is essential for applying Euler's equation to minimize integrals. Boundary conditions are necessary for solving differential equations due to this lack of relationship. Some argue that functions can depend on each other non-algebraically, challenging the notion of independence. The discussion highlights that while y and y' appear independent in notation, they are actually linked through the function being optimized. Ultimately, the treatment of y and y' as independent is a formalism that aids in deriving the necessary conditions for minimization.
HAMJOOP
Messages
31
Reaction score
0
In calculus of variation, we use Euler's equation to minimize the integral.

e.g. ∫f{y,y' ;x}dx

why we treat y and y' independent ?
 
Mathematics news on Phys.org
Because there is no algebraic relation between a function and its derivative.

This is why you need boundary conditions to solve differential equations.
 
UltrafastPED said:
Because there is no algebraic relation between a function and its derivative.

This is why you need boundary conditions to solve differential equations.

Sorry, but this is a bogus answer. A function may depend on another function non-algebraically, and that is perfectly fine as far as functional dependency goes. Not to mention that the dependency may perfectly well be algebraic.

The real reason is that we use the partial derivatives to obtain an expression for the difference ## F(z + \Delta z, y + \Delta y, x) - F(z, y, x) ##, which is approximately ## F_z \Delta z + F_y \Delta y ## when ##\Delta z## and ##\Delta y## are sufficiently small. This expression is true generally, and is true when ## z ## represents the derivative of ## y ## - all it takes is that the variations of both must be small enough. If ## y = f(x) ##, its variation is ## \delta y = \epsilon g(x) ##, and ## \delta y' = \epsilon g'(x)##. If ## \epsilon ## is small enough, then using the result above, ## F((y + \delta y)', (y + \delta y), x) - F(y', y, x)) \approx \epsilon F_{y'}g'(x) + \epsilon F_y g(x) ##, where ##F_{y'}## is just a fancy symbol equivalent to ##F_z##, meaning partial differentiation with respect to the first argument. Then we use integration by parts and convert that to ## \epsilon (-(F_{y'})' + F_y) g(x)##. Observe that we do use the relationship between ## y ## and ## y' ## in the final step.
 
Would the following also be correct reasoning?

We want to find the least action for:

##S = \int_{x_1}^{x_2} f(y,y',x) \, dx##

While this may look as though y, y' and x are simple independent variables, since we are actually looking for the function f(x) that provides this least action, what this notation really means is this:

##S = \int_{x_1}^{x_2} f[y(x), \frac d {dx} y(x), x] \, dx##

So y and y' are not truly independent.
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top