tom.stoer said:
I think it makes no sense to "discuss away" the position eigenstates.
You do have this problem in QM simply b/c in practice you use position- or momentum eigenstates to do calculations. Yes, you may argue that a momentum measurement does not collapose your state to a plane wave; this is certainly correct. But fapp you use plane waves ;-)
I heavily disagree. There are no eigenstates for spectral values of a self-adjoint operator in the continuous part of the spectrum. That's a mathematical fact and has nothing to do with the physical interpretation of quantum theory. The statement that pure states are represented by rays defined by true normalizable Hilbert-space vectors must be taken seriously.
Of course, also "momentum eigenstates", i.e., "plane waves" in the position representation
u_{\vec{p}}(\vec{x})=\frac{1}{(\sqrt{2 \pi})^{3}} \exp(\mathrm{i} \vec{p} \cdot \vec{x})
are obviously no wave functions representing a pure state in quantum mechanics, because they are not normalizable.
They are "generalized" states, i.e., they belong to the dual of the nuclear space, which is an appropriate dense subspace, where the self-adjoint operators are defined. The dual of this smaller subspace of Hilbert space is always much larger and contains generalized functions (distributions).
The physicist's sloppy use of these concepts of the "rigged Hilbert space" works so well, because the Hilbert space is extremely nice to us ;-)). My math prof. used to say that the separable Hilbert space is so well-mannered that it is almost like a unitary space of finite dimension. The emphasis lays on "almost". A very nice paper on the fact, that sometimes you can get nonsense with the naive physicist's handling of these issues can be found here
http://arxiv.org/abs/quant-ph/9907069
An example, where any serious student should get worried once in his/her quantum mechanics lecture when it comes to the evaluation of cross sections from the S matrix. There, the physicists happily square the "momentum-conserving" \delta distribution and then discussing this mathematical nonsensical result away with a lot of handwaving (sometimes called "Fermi's 2nd trick"; nobody could tell me so far, what's Fermi's 1st trick then ;-)). Here, it's easily cured by using wave packets, i.e., true states, in the initial state, and this elucidates a lot the physical meaning of what a cross section is and how real-world scattering experiments are to be understood quantum mechanically. You find a very good explanation in the good old textbook by Messiah and (for the relativistic case) in Peskin/Schroeder, Intro to Quantum Field Theory.
Other sloppyness is not cured yet: There is no mathematical proof for the mathematical existence realistic relativistic interacting field theories like QED or the Standard Model although these are among the most successful theories concerning the agreement between theory and observations ;-)).