I suggest sending it to michael spivak, as he is to me a more authoritative calculus author than stewart. I.e. Stewart is a good author, but when you really want an expert opinion, I recommend sending it to the best.
Spivak is also a published and acknowledged researcher in differential topology, having studied with both Raoul Bott and John Milnor. To this day his name remains attached to the construction of the "Spivak normal fibre bundle", which is an abstract way of associating a "normal sphere bundle" to a Poincare manifold with boundary which is not actually embedded anywhere, as I recall. [see Topology (6), 1967., apparently his PhD thesis]
best wishes
or just private message it to Matt. Matt has a laudable startup project of assembling original approaches to known results, and is likely to know many different proofs of them.
Another expert, and friend of MIke Spivak, is Theodore Shifrin, University of Georgia, also a top instructor, published researcher in differential geometry, and distinguished textbook author.
I am a mathematician, but I feel kind of like a narrow specialist, and mostly know about my little area, and not even the latest stuff in that.
OOps, sorry, I had not read your last post. Conway sounds like a great choice. Of course now that I know it is Functional Analysis, you might look first at Riesz Nagy, and Lang's Analysis II, and Loomis' Abstract Harmonic Analysis, maybe Yoshida, and even Courant-Hilbert, and some newer books, just to see if it really is different from the usual standard presentations.
Sorry, I did not mean to say they would send your idea to this forum, I meant "us" in the sense of us professional mathematicians, just assuming there are others here.
I can tell you now though that if you have say a new proof of the open mapping theorem or the closed graph theorem or something minor like that, it is not publishable research. That is the kind of thing someone might mention in class, as "I just made this up for you guys". But new facts about Fredholm operators e.g. are certainly still an area of research.
By the way your title was a misnomer, you asked not how to do research but how to publish putative research. As to how to do it, there is a lesson in your experience to date. Namely your creative mind tends to exp[lore possibilities suggested by what you read and hear, and try to improve upon it. hence your research is going to be a slight extension oiften of whatever you are reading and hearing. Thus if you mainly read textbooks, you are likely at best to produce small improvements on very well known results.
So to maximize the chance of doing new research, you need to read new papers which contain the latest ideas, and go to meetings where the latest results are presented. To take possibly an absurd example, you had no chance of doing what Wiles did on Fermat's problem if you did not know about Frey's idea and Ribet's result on stable elliptic curves associated to candidate solutions of Fermat.
For example one of my own better results occurred as follows: a famous person asked me to preview a preprint he had received from someone else famous, proving an outstanding and long standing problem in a special case. I read it carefully and learned the ideas, and gave a talk on it at a major university. Then some time later, maybe a year or more, I was able to remember the main idea and use it to help prove something else similar, but technically more difficult. So I benefited both from early acquaintance with the idea and from studying it carefully enough for my talk to remember it and be able to use it in a new situation.
It is very difficult to compete on current topics with people who are well located. E.g. at a top department, you never have to wonder whether what you are doinbg is new, as someone nearby can tell you immediately. Also you can acquire most known results quickly just by asking, so you save enormous amounts of time, and as a result you spend all your own energy doing new things, or trying to.
When back in the real world, you must develop discipline to continue to learn and read and try to keep up in some fashion, more on your own. You form learning groups with people at about your own level. You present things to each other and try to resist discouragement from experts who may bolster their own egos by implying you do not know anything and never will.
It takes work and stamina, and is very rewarding.
In my own case e.g. I need to break my addiction to this forum, stop downloading things I already know to other people, getting simutaneously frustrated with [a few] people getting their noses out of joint about matters they do not understand, and start trying to upload some new ideas and techniques and problems.
Ironically though, it is by giving the research advice above here, that I am hearing it myself.
This site is a nice place to spend some time, all in all.
Peace