dekoi
Can someone check my answer (I am trying to find the second derivative) for any mistakes?
I have looked it over many times, and I've realized that my second derivative is not correct, but I cannot figure out why. Thank you.
\sqrt{x} + \sqrt{y} = 1
\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}(y') = 0
y' = (\frac{-1}{2\sqrt{x}})(\frac{2\sqrt{y}}{1}) = \frac{-2\sqrt{y}}{2\sqrt{x}} = \frac{-\sqrt{y}}{\sqrt{x}}
y'' = \frac{(\frac{-y'}{2\sqrt{y}})(\sqrt{x}) + (\sqrt{y})(\frac{1}{2\sqrt{x}})}{(\sqrt{x})^2}
y'' = \frac{\frac{-y'\sqrt{x}}{2\sqrt{y}} + \frac{\sqrt{y}}{2\sqrt{x}}}{x}
y'' = \frac{-y'\sqrt{x}\sqrt{x} + \sqrt{y}\sqrt{y}}{2x\sqrt{x}\sqrt{y}}
y'' = \frac{-(\frac{-\sqrt{y}}{\sqrt{x}})\sqrt{x}\sqrt{x} + \sqrt{y}\sqrt{y}}{2x\sqrt{x}\sqrt{y}}
y'' = \frac{\sqrt{y}\sqrt{x} + \sqrt{y}\sqrt{y}}{2x\sqrt{x}\sqrt{y}}
y'' = (\frac{\sqrt{x}\sqrt{y}+y}{2x\sqrt{x}\sqrt{y}})(\frac{\sqrt{x}\sqrt{y}}{\sqrt{x}\sqrt{y}})
y'' = \frac{xy + y\sqrt{x}\sqrt{y}}{2x^2y}
y'' = \frac{x + \sqrt{x}\sqrt{y}}{2x^2}
I have looked it over many times, and I've realized that my second derivative is not correct, but I cannot figure out why. Thank you.
\sqrt{x} + \sqrt{y} = 1
\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}(y') = 0
y' = (\frac{-1}{2\sqrt{x}})(\frac{2\sqrt{y}}{1}) = \frac{-2\sqrt{y}}{2\sqrt{x}} = \frac{-\sqrt{y}}{\sqrt{x}}
y'' = \frac{(\frac{-y'}{2\sqrt{y}})(\sqrt{x}) + (\sqrt{y})(\frac{1}{2\sqrt{x}})}{(\sqrt{x})^2}
y'' = \frac{\frac{-y'\sqrt{x}}{2\sqrt{y}} + \frac{\sqrt{y}}{2\sqrt{x}}}{x}
y'' = \frac{-y'\sqrt{x}\sqrt{x} + \sqrt{y}\sqrt{y}}{2x\sqrt{x}\sqrt{y}}
y'' = \frac{-(\frac{-\sqrt{y}}{\sqrt{x}})\sqrt{x}\sqrt{x} + \sqrt{y}\sqrt{y}}{2x\sqrt{x}\sqrt{y}}
y'' = \frac{\sqrt{y}\sqrt{x} + \sqrt{y}\sqrt{y}}{2x\sqrt{x}\sqrt{y}}
y'' = (\frac{\sqrt{x}\sqrt{y}+y}{2x\sqrt{x}\sqrt{y}})(\frac{\sqrt{x}\sqrt{y}}{\sqrt{x}\sqrt{y}})
y'' = \frac{xy + y\sqrt{x}\sqrt{y}}{2x^2y}
y'' = \frac{x + \sqrt{x}\sqrt{y}}{2x^2}
Last edited by a moderator: