smallphi said:
I appreciate your trials, but like the previous poster, you are NOT addressing my questions:
Do you appreciate it? I don't get the impression you realize how convoluted some of your questions really are. It's tough to answer some because they're confusing multiple concepts simultaneously. Also, I wasn't trying to answer your questions in my last reply. I was replying to your last post and trying to providing some general guidance. I used caps in places where I was trying to highlight places that concepts from different theories were being introduced.
smallphi said:
1. Where is the missing electrostatic potential drop in p-n junction under forward/reverse bias?
There simply isn't a "missing" electrostatic potential drop under either bias.
smallphi said:
2. The external voltage is not 'applied on the p-n junction'. It's applied on a circuit of two metal-semiconductor junctions and the p-n junction. Why would the p-n junction alone get the total increase in external voltage but the metal-semicondor junctions get no change at all?
Each metal-semi junction has a very small drop, compared to the drop across the semi-semi junction. This drop is sometimes called a contact potential. A reasonable estimate would be around 1% of the total applied voltage at each metal-semi junction. For this reason these drops are typically neglected in simple explanations and first, sometimes even, second order mathematical models.
In the forward bias case, when current flows, there is also some drop through each semi region, due to the ohmic loss of the materials. This is also usually neglected, because it is likewise usually quite small. I can't give a useful % for that though it depends on to many different factors.
This is why simple models treat the "applied voltage" as if it were dropped entirely across the junction. It's a very good approximation.
I will also point out this "drop distribution" I've just described is really a description of how the electrostatic field behaves spatially. This has nothing to do with chemical potentials (fermi levels). Again, chemical potentials are merely numbers calculated from a statistical ensemble, nothing to do with spatial distributions in any way.
smallphi said:
The electrochemical potential cannot prevent the electrostatic potential obey the laws of electrostatics. The very notion of electrostatic potential is not defined if it doesn't obey them - if it jumps across a closed loop then you will have multi-valued function with several values at the same point. The equalizing of electrochemical potential in equilibrium leads to certain charge distribution in the system. Now you can imagine that you make a copy of that charge distribution but using charges that are frozen in place by some external forces (you can imagine a daemon holding each charge in place). Are you trying to tell me that the electrostatic potential drop around any closed loop in that system would not be zero?
Not at all. This is an example of a poorly phrased question founded on a faulty claim. Again, there is no "missing" electrostatic potential drop.
smallphi said:
And by the way, forward bias in p-n junction is NOT equilibrium situation, there is nonzero total current. They even have to describe electrons and holes with two different quasi-Fermi potentials inside the transition region. The Fermi levels match only for junction in equilibrium with no applied external voltage.
You are correct, when steady current flows in the forward bias case the system is described thermodynamically as "near equilibrium". This is exactly the type of state where the electrochemical potential gradient is used to describe
system dynamics.
smallphi said:
If you claim that the Fermi levels on the usual diagrams of forward biased junction are the 'chemical' potentials not the electrochemical ones, then adding the electrostatic potential energy represented by the edge of the conduction band to them will lead to even bigger jump between the p and n side because the fermi levels and the conduction band jump by the same amount in the SAME direction, they don't compensate each other. So no matter how you define the electrochemical potential, like the fermi levels or fermi levels plus conduction band, it jumps for forward or reverse biased p-n junction.
I claim "fermi level" is merely a name generally used to describe the chemical potential of systems who obey fermi statistics. The texts you are looking at may be doing something non-standard in their terminology. I have no way of knowing so I will have to leave my answer at this. I hope all this hard work pays off for you. This will be my last reply. I don't have enough time to type all this out!
Good luck.