Understanding derivation of kinetic energy from impulse?

AI Thread Summary
The discussion focuses on the relationship between impulse, momentum, and kinetic energy. It highlights that the area under a force-time plot represents impulse, which is equivalent to the change in momentum. The key confusion arises from integrating with respect to velocity instead of time to derive kinetic energy. The explanation clarifies that by manipulating the equations, one can understand that work done is related to kinetic energy through integration in the velocity domain. Ultimately, the conversation emphasizes the importance of conceptual clarity in transitioning from time to velocity for calculating kinetic energy.
richsmith
Messages
4
Reaction score
0
I have a question that annoys my basic understanding of kinetic energy.

I know if I have a force-time plot then the area under the curve is equivalent to the impulse imparted on an object (in units Newton-Seconds). I know that this is also equivalent to the change in momentum of the object i.e. Ft = delta mV

I know that i can get these values from the plot by simply intgrating the Force function wrt to time. Now I want to determine the kinetic energy involved in this event. I know that k.e. = 1/2mV^2 so I know that is simply the integral of the impulse w.r.t. to velocity

Now that is the part conceptually I don't really grasp. What does it really mean to integrate with respect to velocity? This means I am suddenly on a velocity :rolleyes: domain, not time, and I don't really understand this?

Thanks.
 
Physics news on Phys.org
While impulse is ∫Fdt, work is ∫Fdx. Since force can be viewed as the rate of change of momentum, you have F = dp/dt = m dv/dt. Thus:
W = ∫Fdx = ∫m (dv/dt) * dx = m∫dv*(dx/dt) = m∫v dv = ½mv² (which is kinetic energy).

Make sense?
 
After some head scratching yes it does, finaly.

I think my mistake has always been trying to integrate wrt time. I really had to step back and ask myself what i was after, work that is, which is not a time integral.

Manipulating dv/dt to dx/dt and then subbing in V now makes it algebraicly understandable.

Thanks alot.

Richard.
 
I have a question that annoys my basic understanding of kinetic energy.

Similar to questions which annoys my basic understanding of electrostatics?

Why not just calculate the final velocity of the body and then calculate the K.E.

Take as a caveat that the momentum of a body might not be directly proportional to K.E possesed by it.
 
Hi there, im studying nanoscience at the university in Basel. Today I looked at the topic of intertial and non-inertial reference frames and the existence of fictitious forces. I understand that you call forces real in physics if they appear in interplay. Meaning that a force is real when there is the "actio" partner to the "reactio" partner. If this condition is not satisfied the force is not real. I also understand that if you specifically look at non-inertial reference frames you can...
I have recently been really interested in the derivation of Hamiltons Principle. On my research I found that with the term ##m \cdot \frac{d}{dt} (\frac{dr}{dt} \cdot \delta r) = 0## (1) one may derivate ##\delta \int (T - V) dt = 0## (2). The derivation itself I understood quiet good, but what I don't understand is where the equation (1) came from, because in my research it was just given and not derived from anywhere. Does anybody know where (1) comes from or why from it the...
Back
Top