Let's find the (anti)commutator of an arbitrary 2 \times 2 matrix \hat{X} with the matrix corresponding to the operator \hbar \, \hat{s}_{z} = \frac{\hbar}{2} \, \sigma_{3}. We get:
<br />
\left[\frac{\hbar}{2} \, \hat{\sigma}_{3}, \hat{X} \right] = <br />
\left[\begin{array}{cc}<br />
\frac{\hbar}{2} & 0 \\<br />
<br />
0 & -\frac{\hbar}{2}<br />
\end{array}\right] \cdot \left[\begin{array}{cc}<br />
a & b \\<br />
<br />
c & d<br />
\end{array}\right] - \left[\begin{array}{cc}<br />
a & b \\<br />
<br />
c & d<br />
\end{array}\right] \cdot \left[\begin{array}{cc}<br />
\frac{\hbar}{2} & 0 \\<br />
<br />
0 & -\frac{\hbar}{2}<br />
\end{array}\right] = \hbar \, \left[\begin{array}{cc}<br />
0 & b \\<br />
<br />
-c & 0<br />
\end{array}\right]<br />
But, this matrix has no diagonal elements, so it is never proportional to the unit matirx.
However, if you take the anticommutator, then you will get:<br />
\left\{\frac{\hbar}{2} \, \hat{\sigma}_{3}, \hat{X} \right\} = <br />
\left[\begin{array}{cc}<br />
\frac{\hbar}{2} & 0 \\<br />
<br />
0 & -\frac{\hbar}{2}<br />
\end{array}\right] \cdot \left[\begin{array}{cc}<br />
a & b \\<br />
<br />
c & d<br />
\end{array}\right] + \left[\begin{array}{cc}<br />
a & b \\<br />
<br />
c & d<br />
\end{array}\right] \cdot \left[\begin{array}{cc}<br />
\frac{\hbar}{2} & 0 \\<br />
<br />
0 & -\frac{\hbar}{2}<br />
\end{array}\right] = \hbar \, \left[\begin{array}{cc}<br />
a & 0 \\<br />
<br />
0 & -d<br />
\end{array}\right]<br />
Now, choosing a = -d = i, we see that:
<br />
\left\{\hbar \, \hat{\sigma}_{3}, i \, \hat{\sigma}_{3}\right\} = i \, \hbar \, \hat{1}<br />
So, if we accept that for the particles with spin-1/2, the corresponding canonical relations between the operators are anticommutations, then, we might say that the conjugate variable to \sigma_{z} is \frac{i}{\hbar} \, {\sigma}_{z}.