Fredrik said:
I'm not sure how useful it will be to read the entire thread. As you have noticed, a new guy showed up and spent a couple of days doing nothing but yelling insults at me. It might be helpful to read the part of Ballentine's article that argues that you
can measure position and momentum simultaneously. See my post
#287 for more about that (and for the link to Demystifier's argument, which was posted in another thread).
Fredrik, I really had to give this a lot of thought, and I hope that I can explain myself in a manner that makes sense. Anyway, I'll do my best. I can definitely see Demystifier's point when he says that the momentum is calculated and not measured. Now I may be mistaken, but I believe that momentum will always be calculated, and not measured. I can't think of any way to determine momentum using only one measurement. Thus momentum will always necessitate a calculation.
But after further thought I decided that the whole debate about whether momentum is calculated or not, is a red herring. It really is beside the point. HUP is describing a completely different situation. HUP states that the more precisely we know a particle's position, the less precisely we will know its momentum. Yet when we measure a particle's position, we can also calculate its momentum based upon a previous measurement. Granted this calculation may not be exact, but it should be very close. You could indeed argue that we really don't know what path the particle took from point "A" to point "B", and thus we can't define its momentum precisely. But this is true regardless of how well we define its position. More accurately defining a particle's position does nothing to change the paths the particle could have taken, and so doesn't affect the accuracy with which we can determine its momentum. If anything, the more precisely we measure a particle's position, the fewer the number of paths the particle could have taken. Which would imply that the more precisely we know its position, the more precisely we should know its momentum also. Any inherent inability to define momentum has nothing to do with HUP. In any case we may not know its momentum exactly, but we should be able to come pretty darn close.
But according to HUP we shouldn't even be able to come close. Since we know the particle's position precisely, the wave function describing its momentum should be massive, but it's not. Even using a debatably imprecise calculation, we can still come pretty close, and HUP states that we shouldn't even be able to come close. After a measurement, position and momentum definitely don't act like conjugate variables.
So what exactly is HUP saying? I think HUP is saying that if you try to define the wave functions of two conjugate variables at the same time, (if you try to confine them to some arbitrarily small value) then the more precisely you define the wave function of one, the larger the wave function of the other will be. But when you actually make a measurement you collapse the wave functions for them both. The wave function defining the particle's position will collapse, and the wave function defining the particle's momentum between its last interaction and this one will also collapse. I think that HUP is about defining the wave functions of two conjugate variables, but does not apply once a measurement has been made, and the wave function has collapsed.
I hope that this explanation has made sense, sometimes my thoughts aren't as clear on paper (or monitor) as they are in my head.
Whether the momentum is calculated or measured, is irrelevant.
At least that's my ninth grade, Wikipedia educated opinion.
But I'm definitely interested in yours or anyone else's ideas.