Difference between a particle and its field

San K
Messages
905
Reaction score
1
What is the difference between a field and a particle?
What is a field composed off?
Do weak and strong (nuclear) interactions have any fields associated with them?

Is the below correct (even if it does not answer the above questions):

A particle is an excitation of its field.

An electron is an excitation of the electronic field
A photon is an excitation of the EM field
A boson is an excitation of the Higg's field
 
Physics news on Phys.org
San K said:
What is the difference between a field and a particle?
What do you mean? A particle is a localized excitation of a field, whereas a field is a continuous entity that represents something at every point (such as a force).
What is a field composed off?
Do weak and strong (nuclear) interactions have any fields associated with them?
Yes. The strong force is mediated by gluons, so the field that corresponds to it is the gluon field. The weak force is mediated by W and Z bosons. So, they are represented by a corresponding field. Since they are vector bosons, their field is a vector field.
A particle is an excitation of its field.
Yes.
An electron is an excitation of the electronic field
When talking about matter particles, the corresponding fields are called fermionic fields. An yes, there is one for every particle.
A photon is an excitation of the EM field
Yes.
A boson is an excitation of the Higg's field
No. A Higgs boson is an excitation of the Higgs field. Bosons are particles with integer spins, such as photons, gluons, etc.
 
Thanks Mark M

Mark M said:
A Higgs boson is an excitation of the Higgs field. Bosons are particles with integer spins, such as photons, gluons, etc.

Agreed.

Typographical error, sorry. I forgot to write Higgs in front.

I wonder why it has to be that - a half-integer spin particle (Gluon/Boson) holds together a full integer spin particle (Quark/Fermion).

Could it be that you need (many) Gluons to occupy the same quantum state in order to hold the Quarks together?
 
Force carriers (gauge bosons) must be bosons so that they can appear to be continuous fields in the classical limit. For a simple example, think of the electromagnetic field. On a quantum level, we can think of a superposition of trillions of photons in the same state (the tensor product of their wavefunctions), but as we scale up to a macroscopic level, this appears to be a field in the classical sense. That's why you'll never come across a fermionic field - you can't have more than one fermion in the same state.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Replies
3
Views
2K
Replies
21
Views
3K
Replies
1
Views
1K
Replies
8
Views
2K
Replies
4
Views
1K
Replies
15
Views
4K
Replies
1
Views
1K
Back
Top