Find the orthogonal trajectories

manal950
Messages
177
Reaction score
0
Hi all

376730650.jpe
 
Physics news on Phys.org
Start all over again! Each "\lambda" gives a different member of the family of curves. To have an equation that describes the family and not an individual member, you have to elimininate \lambda. That's the whole point of differentiating.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
2
Views
3K
Replies
7
Views
1K
Replies
11
Views
1K
Replies
6
Views
1K
Replies
2
Views
1K
Replies
5
Views
1K
Replies
4
Views
2K
Replies
18
Views
3K
Back
Top