A history of the universe using the new Planck numbers

AI Thread Summary
The discussion presents a detailed history of the universe using new Planck parameters, illustrating expansion ratios from the past to the future. Key observations include the inflection point in the scale factor curve occurring around 7.7 billion years and the growth rate stabilizing at 1/176 percent per million years by the end of the table. The data shows that objects emitting light 4 billion years ago were receding at the speed of light, with earlier objects receding faster than light. The table also highlights the visibility of the cosmological constant Lambda through the growth rate's square. Overall, the analysis emphasizes the differences in expansion curves between current Planck and WMAP data, particularly noticeable in future projections.
marcus
Science Advisor
Homework Helper
Gold Member
Dearly Missed
Messages
24,753
Reaction score
794
Here's a sample history from fairly far back in the past, going up to the present (S = 1) in 20 expansion ratio steps, and then in another 20 expansion steps, going out a good stretch into the future, when distances will be 25 times what they are today.

I could have asked for a wider expanse of time and a greater overall expansion to be covered, but this seemed ample for test-driving the new Planck parameters.{\begin{array}{|c|c|c|c|c|c|c|}\hline Y_{now} (Gy) & Y_{inf} (Gy) & S_{eq} & H_{0} & \Omega_\Lambda & \Omega_m\\ \hline14.56&17.6&3400&67.17&0.684&0.316\\ \hline\end{array}} {\begin{array}{|r|r|r|r|r|r|r|} \hline S=z+1&a=1/S&T (Gy)&T_{Hub}(Gy)&D (Gly)&D_{then}(Gly)&D_{hor}(Gly)&D_{par}(Gly)\\ \hline45.000&0.022&0.056&0.085&39.362&0.875&1.247&0.153\\ \hline37.201&0.027&0.075&0.114&38.595&1.037&1.488&0.206\\ \hline30.753&0.033&0.100&0.151&37.750&1.228&1.772&0.277\\ \hline25.423&0.039&0.133&0.201&36.821&1.448&2.107&0.372\\ \hline21.017&0.048&0.178&0.268&35.798&1.703&2.500&0.498\\ \hline17.374&0.058&0.237&0.357&34.672&1.996&2.959&0.667\\ \hline14.363&0.070&0.316&0.475&33.434&2.328&3.494&0.893\\ \hline11.874&0.084&0.420&0.632&32.071&2.701&4.111&1.196\\ \hline9.816&0.102&0.559&0.841&30.573&3.115&4.821&1.599\\ \hline8.115&0.123&0.745&1.118&28.926&3.565&5.628&2.137\\ \hline6.708&0.149&0.991&1.485&27.115&4.042&6.538&2.855\\ \hline5.546&0.180&1.317&1.971&25.129&4.531&7.551&3.812\\ \hline4.584&0.218&1.751&2.610&22.951&5.006&8.659&5.086\\ \hline3.790&0.264&2.323&3.443&20.571&5.428&9.846&6.780\\ \hline3.133&0.319&3.076&4.516&17.982&5.740&11.084&9.028\\ \hline2.590&0.386&4.060&5.861&15.189&5.865&12.330&11.999\\ \hline2.141&0.467&5.325&7.485&12.215&5.705&13.526&15.903\\ \hline1.770&0.565&6.923&9.331&9.111&5.148&14.608&20.991\\ \hline1.463&0.683&8.883&11.256&5.963&4.075&15.518&27.544\\ \hline1.210&0.827&11.200&13.059&2.882&2.382&16.225&35.865\\ \hline1.000&1.000&13.834&14.560&0.000&0.000&16.730&46.281\\ \hline0.851&1.175&16.259&15.529&-2.253&-2.646&17.023&56.991\\ \hline0.725&1.380&18.819&16.232&-4.264&-5.883&17.220&69.718\\ \hline0.617&1.621&21.473&16.718&-6.040&-9.789&17.348&84.771\\ \hline0.525&1.904&24.191&17.040&-7.589&-14.446&17.429&102.522\\ \hline0.447&2.236&26.951&17.248&-8.928&-19.964&17.478&123.419\\ \hline0.381&2.627&29.739&17.380&-10.079&-26.473&17.507&147.994\\ \hline0.324&3.085&32.543&17.463&-11.065&-34.139&17.521&176.879\\ \hline0.276&3.624&35.358&17.515&-11.908&-43.154&17.526&210.819\\ \hline0.235&4.257&38.180&17.548&-12.627&-53.751&17.548&250.694\\ \hline0.200&5.000&41.006&17.568&-13.241&-66.203&17.568&297.535\\ \hline0.170&5.873&43.834&17.580&-13.763&-80.832&17.580&352.560\\ \hline0.145&6.899&46.664&17.588&-14.208&-98.017&17.588&417.194\\ \hline0.123&8.103&49.495&17.592&-14.587&-118.205&17.592&493.115\\ \hline0.105&9.518&52.327&17.595&-14.910&-141.917&17.595&582.294\\ \hline0.089&11.180&55.159&17.597&-15.185&-169.772&17.597&687.047\\ \hline0.076&13.133&57.991&17.598&-15.419&-202.490&17.598&810.091\\ \hline0.065&15.426&60.823&17.599&-15.618&-240.921&17.599&954.621\\ \hline0.055&18.119&63.656&17.599&-15.788&-286.064&17.599&1124.389\\ \hline0.047&21.283&66.488&17.600&-15.932&-339.089&17.600&1323.801\\ \hline0.040&25.000&69.321&17.600&-16.055&-401.373&17.600&1558.036\\ \hline\end{array}}Time now (at S=1) or present age in billion years:13.834
'T' in billion years (Gy) and 'D' in billion light years (Gly)

There are lots of things to recognize in the new history table. The widest point in the teardrop shaped lightcone comes around year 4 billion in the S=2.59 row. A source that emitted light then which we are receiving now would have been receding at the speed of light. Before that objects we see today were receding faster than c and you can calculate the multiple simply by dividing Dthen/THub
I understand the inflection point in the scalefactor curve comes around year 7.7 billion---that's been determined separately (it does not jump out at you from the table.) I haven't included enough rows in this table to capture it. The moment of inflection in distance growth comes between two of my rows.

The eventual growth rate of 1/176 percent per million years is already in effect by the end of the table. You can see its reciprocal clearly in the Cosmic Event Horizon distance DHor by that time, and in the convergence the Hubble time to the corresponding eventual constant value. The square of that growth rate is an alias for the cosmological constant Lambda, so the table makes Lambda visible.

Those are just some of the things recognizable in this sample history.
 
Last edited:
Space news on Phys.org
A comparison of the present Planck with the present WMAP maximum likelihood data as expansion curves, as per TabCosmo7 tables.

attachment.php?attachmentid=57043&stc=1&d=1364109639.jpg


Expansion curve differences only really noticeable in future, although the inflection point for zero acceleration (deceleration-acceleration crossover) shifts from 7.4 Gy to 7.7 Gy, as calculated from second Friedmann equation.
 

Attachments

  • Planck 2013 Expansion.jpg
    Planck 2013 Expansion.jpg
    33.5 KB · Views: 732
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
The formal paper is here. The Rutgers University news has published a story about an image being closely examined at their New Brunswick campus. Here is an excerpt: Computer modeling of the gravitational lens by Keeton and Eid showed that the four visible foreground galaxies causing the gravitational bending couldn’t explain the details of the five-image pattern. Only with the addition of a large, invisible mass, in this case, a dark matter halo, could the model match the observations...
Hi, I’m pretty new to cosmology and I’m trying to get my head around the Big Bang and the potential infinite extent of the universe as a whole. There’s lots of misleading info out there but this forum and a few others have helped me and I just wanted to check I have the right idea. The Big Bang was the creation of space and time. At this instant t=0 space was infinite in size but the scale factor was zero. I’m picturing it (hopefully correctly) like an excel spreadsheet with infinite...
Back
Top