How to derive the equations of oscillation

AI Thread Summary
The discussion centers on deriving the equations of motion for simple harmonic motion (SHM) from the second-order differential equation m\ddot{x} + kx = 0. The solution x(t) = A cos(ωt + ∅) arises because the second derivative of the function must relate linearly to the original function, which is satisfied by trigonometric functions. The parameters ω and ∅ are determined from the general sinusoidal form, where ω = √(k/m) represents the angular frequency and ∅ accounts for initial conditions. The conversation highlights the necessity of understanding the nature of solutions for linear differential equations and the role of initial conditions in determining specific solutions. Overall, grasping these concepts is essential for solving SHM problems effectively.
HARI A
Messages
4
Reaction score
0
I am new to this site.
I have a problem with the derivations of second order equations for SHM.
F= -kx
F+kx+0;ma+kx=0
m(second time derivative of x)+k(first time derivative of x)=0
As my textbook says above equation implies that x(t)=Acos(ωt+∅)
But I can't understand why. From where did they get those ω,∅ and cosine function.
Please help
 
Physics news on Phys.org
You derived the second-order ODE right: m\ddot{x} + kx = 0. This yields the equation \ddot{x}= - \left ( \frac{k}{m} \right ) x. Only functions whose second derivative have the same form as the original function are valid solutions. Exponentials and trigonometric functions fit this description (Euler's identity shows how they are related). Thus, x(t) = A \cos{(ωt-θ)} is a valid solution. Substitute it into the ODE and see for yourself.
 
I didn't see the other part to your post. The ω and θ just come from the general form of a sinusoidal function. You can solve for them by substituting x(t) into your ODE and solving for them. ω = \sqrt{k/m} and θ is the phase angle, which is a way of accounting for the fact that SHM might not start from a rest position.
 
HARI A said:
m(second time derivative of x)+k(first time derivative of x)=0
As my textbook says above equation implies that x(t)=Acos(ωt+∅)
But I can't understand why. From where did they get those ω,∅ and cosine function.
Please help

This is an example of a linear differential equation. There are standard methods for solving them, which you can find e.g. on Wikipedia, which even gives the simple harmonic oscillator as an example:

http://en.wikipedia.org/wiki/Linear_differential_equation#Simple_harmonic_oscillator

Or you can look in any introductory textbook on differential equations, which will have more details about the method.
 
HARI A said:
From where did they get those ω,∅ and cosine function.
Please help

This is the annoying thing about differential equations. :biggrin: You often have to start, knowing what sort of answer you are likely to get. In this case, you need the answer to be in the form of a function for which the second time derivative is linearly related to that function. We know that differentiating Sin(x) twice gives you -Sin(x) so that a Sin function can fit as a solution (and so can a Cos function) Because of the integration involved in solving the equation, there are other constants that come into the solution and their actual values will depend upon the 'initial conditions.

But Maths is always a bit like that, isn't it? Why multiply both sides by x? Why take Logs? Why subtract those two simultaneous equations? I'm sure you've already been there and that you already know some of the tricks.
 
Thread 'Gauss' law seems to imply instantaneous electric field propagation'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
Thread 'A scenario of non-uniform circular motion'
(All the needed diagrams are posted below) My friend came up with the following scenario. Imagine a fixed point and a perfectly rigid rod of a certain length extending radially outwards from this fixed point(it is attached to the fixed point). To the free end of the fixed rod, an object is present and it is capable of changing it's speed(by thruster say or any convenient method. And ignore any resistance). It starts with a certain speed but say it's speed continuously increases as it goes...
Maxwell’s equations imply the following wave equation for the electric field $$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2} = \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$ I wonder if eqn.##(1)## can be split into the following transverse part $$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2} = \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$ and longitudinal part...

Similar threads

Replies
4
Views
2K
Replies
4
Views
2K
Replies
1
Views
1K
Replies
8
Views
2K
Replies
131
Views
7K
Replies
4
Views
3K
Back
Top