Proving Continuity of y^n Using Induction and the Definition of Continuity

  • Context: Graduate 
  • Thread starter Thread starter Someone2841
  • Start date Start date
  • Tags Tags
    Continuity
Click For Summary
SUMMARY

This discussion focuses on proving the continuity of the function \( f_n(y) = y^n \) for all natural numbers \( n \) using mathematical induction and the definition of continuity. The proof demonstrates pointwise continuity by establishing that for any \( \epsilon > 0 \), there exists a \( \delta \) such that \( |y^n - u^n| < \epsilon \) when \( |y - u| < \delta \). The proof is structured into two cases: when \( u = 0 \) and when \( u \neq 0 \), leading to a definitive conclusion that \( y^n \) is continuous for all \( n \in \mathbb{N} \).

PREREQUISITES
  • Understanding of mathematical induction
  • Familiarity with the definition of continuity in real analysis
  • Basic knowledge of sequences and functions in mathematics
  • Experience with geometric series and their properties
NEXT STEPS
  • Study the properties of continuous functions and their products
  • Learn about the formal definition of continuity in real analysis
  • Explore mathematical induction techniques in proofs
  • Investigate the implications of continuity on polynomial functions
USEFUL FOR

Students and educators in undergraduate Real Analysis courses, mathematicians interested in proof construction, and anyone studying the properties of continuous functions.

Someone2841
Messages
43
Reaction score
6
Hello. This is an improvement on a previous post, "Continuity of y^2". My original plan was to first prove that y and y^2 were continuous and then prove by induction that y^n was continuous; however, in the process of doing so I think I found a better way. This proof is for rudimentary practice of proof construction and should be taken in context of an undergraduate Real Analysis I course. How does this look?

---Start Proof---

Define ##(f_n)_{n \in \mathbb{N}}## as a sequence of functions where ##f_n:\mathbb{R} \to \mathbb{R}## maps ##y \mapsto y^n##. I intend prove pointwise continuity for any ##f_n## by showing that:

##\forall n \in \mathbb{N} \;\; \forall e > 0 \;\; \forall u \;\; \exists \delta: \forall y (|y-u| < \delta \implies |f_n(y) - f_n(u)| = |y^n - u^n| < \epsilon)##​

Choose any ##n \in N, e > 0,## and ##u##.

Case 1: ##u = 0##
Pick ##\delta = \epsilon^{\frac{1}{n}}## and then any ##y##. It is clear that ##|y-0
| < \epsilon^{\frac{1}{n}} \implies |y^n - 0| < \epsilon##.​

Case 2: ##u \neq 0##

Choose a ##\delta < |y|## and ##\delta < \frac{\epsilon}{(2^{n}-1)|u|^{n-1}}.## A ##\delta## meeting this criteria can be found since both ##|y|## and ##\frac{\epsilon}{(2^{n}-1)|u|^{n-1}}## are positive, and there exists no smallest positive number.

Note the following:
  1. ##|y^n-u^n| = |y-u| \left |\sum_{i=0}^{n-1} u^{n-1-i}y^i \right |##. This is obvious from evaluating ##\frac{y^n-u^n}{y-u}##.
  2. ##|y-u| < \delta < |y| \implies |u| < 2|y|##
    Proof of 2.
    ##|y-u| < |y|## so ##u - y < |y|## and ##u < |y| + y \leq 2|y|##. At the same time ##y-u < |y|##,which implies ##-u < |y| - y \leq 2|y|##. Both ##u## and ##-u## are ##<2|y|##; therefore ##|u|<2|y|##.​
  3. ##\left |\sum_{i=0}^{n-1} u^{n-1-i}y^i \right | < \sum_{i=0}^{n-1} 2^i|u|^{n-1} = (2^n-1)|u|^{n-1} ##. This follows from 2. and the evaluation of the geometric series.

It follows that:
##\begin{array}
&|y^n-u^n| &=& |y-u| | \sum_{i=0}^{n-1} u^{n-1-i}y^i | & \text{1.}\\
&<& \delta (2^{n}-1)|u|^{n-1} & \text{By assumption that } |y-u| < \delta \text{ and 3.}\\
&<& \frac{\epsilon}{(2^{n}-1)|u|^{n-1}}(2^{n}-1)|u|^{n-1} & \delta\text{ was chosen for this}\\
&=& \epsilon
\end{array}##​

.
QED​
---End Proof---

Thanks in advance!
 
Last edited:
Physics news on Phys.org
If two functions are continuous, their product is as well.

It's trivial to show identity continuous. Then you can multiply them together n times.
 
johnqwertyful said:
If two functions are continuous, their product is as well.

It's trivial to show identity continuous. Then you can multiply them together n times.

This is true, and of course I knew that; my goal here is to prove the continuity of ##y_n## from the definition of continuity without assumptions concerning the properties of continuous function like such. With that said, I probably should have thought more about that when constructing this proof. Proving that the product of two continuous functions is continuous is probably simpler enough that I could have either 1) provided it as a lemma to the proof or 2) used the same methodology. For example

Proof Sketch:
Trivially, ##|y-u| < \delta = \epsilon \implies |y-u| < \epsilon## and therefore ##f(y) = y## is continuous. If ##y^n## is assumed to be continuous, then it can be shown that ##y^{n+1}## is also continuous by [insert a special case of the product of continuity functions here where ##f(y) = y## and ##g(y) = y^n##]. By induction, ##f(y) = y^n## is continuous for all ##n \in \mathbb{N}##.​

Does this seem right?
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K