Dot product of vector and del.

AI Thread Summary
The discussion centers on the expressions (u $ ∇) and (∇ $ u), questioning their equivalence. It is clarified that the usual convention dictates that ∇ acts to the right, meaning these two expressions are not equal. This is likened to the relationship between the differentiation operator D and a vector u, emphasizing the importance of context in vector operations. Additionally, the term ∇ is not a real vector, and proper notation is crucial for accurate interpretation. Understanding how to combine these operators is essential for resolving the question.
pyroknife
Messages
611
Reaction score
4
I'm not sure which section is best to post this question in.

I was wondering if the expression (u $ ∇) is the same as (∇ $ u).
Here $ represents the dot product (I couldn't find this symbol.
∇=del, the vector differentiation operator
and u is the velocity vector or any other vector
 
Mathematics news on Phys.org
The usual convention is that ∇ acts to the right so (u $ ∇) and (∇ $ u) are not equal.

This is analogous to asking if uD is equal to D u where D is the differentiation operator.
 
QUOTE=pyroknife;4654871]I'm not sure which section is best to post this question in.

I was wondering if the expression (u $ ∇) is the same as (∇ $ u).
Here $ represents the dot product (I couldn't find this symbol.
∇=del, the vector differentiation operator
and u is the velocity vector or any other vector[/QUOTE]
Before anyone can answer that question, you will have to tell us what you mean by "(u $ ∇). The reason I say that is that things like \nabla\cdot u and \nabla\times u are mnemonics for \partial u_x/\partial x+ \partial u_y/\partial y+ \partial u_z/\partial and (\partial u_z/\partial y- \partial u_y/\partial z)\vec{i}+ (\partial u_x/\partial z- \partial u_z/\partial x)\vec{j}+ (\partial u_y/\partial x- \partial u_x/\partial y)\vec{k}. In particular "\nabla" is NOT a real vector and you cannot combine it with vector functions without saying HOW that is to be done.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
4
Views
4K
Replies
4
Views
3K
Replies
5
Views
2K
Replies
7
Views
2K
Replies
12
Views
3K
Replies
33
Views
4K
Back
Top