eep
- 225
- 0
Hi,
I'm trying to prove that for a particle in a potential V(r), the rate of change of the expectation value of the orbital angular momentum L is equal to the expectation value of the torque:
<br /> \frac{d}{dt}<L> = <N><br />
where
N = r \times (-\bigtriangledown{V})
Basically, I'm having problems calculating the commutor of the Hamiltonian and the angular momentum operator, as
<br /> \frac{d}{dt}<L> = \frac{i}{\hbar}<[H,L]> + <\frac{\partial{L}}{\partial{t}}><br />
Any hints on how I can calculate this?
I'm trying to prove that for a particle in a potential V(r), the rate of change of the expectation value of the orbital angular momentum L is equal to the expectation value of the torque:
<br /> \frac{d}{dt}<L> = <N><br />
where
N = r \times (-\bigtriangledown{V})
Basically, I'm having problems calculating the commutor of the Hamiltonian and the angular momentum operator, as
<br /> \frac{d}{dt}<L> = \frac{i}{\hbar}<[H,L]> + <\frac{\partial{L}}{\partial{t}}><br />
Any hints on how I can calculate this?