Finding 8 Numbers with phi(n) = 240

  • Thread starter Thread starter AH05
  • Start date Start date
  • Tags Tags
    Numbers
AH05
Messages
4
Reaction score
0
Find eight different numbers n with phi(n) = 240.



phi(n) = the number of positive integers less than or equal to n, that are relatively prime to n.
 
Physics news on Phys.org
Surely you are aware that you must show what you have tried yourself before anyone can give suggestions?
 
12^12 = (3^12)(2^24)

phi(12^12) = phi(3^12) * phi(2^24) = 2^(24-1) * (2-1) *3^12 *(3-1)
= 2^23 * 3^12 * 2 = 2^24 * 3^12
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top