jostpuur
- 2,112
- 19
<br />
V(x) = \left\{\begin{array}{ll}<br />
0, & \exists n\in\mathbb{Z},\; x\in [2nL, (2n+1)L]\\<br />
\infty, &\exists n\in\mathbb{Z},\; x\in\; ](2n-1)L, 2nL[\\<br />
\end{array}\right.<br />
This is a periodic potential. L is some constant. Is a solution
<br /> \psi(x) = \chi_{[0,L]}(x)\;\sin\big(\frac{\pi x}{L}\big)<br />
of the Schrödinger's equation
<br /> \Big(-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\Big)\psi(x) = E\psi(x)<br />
a counter example to the Bloch's theorem?
\chi_{[0,L]} is a characteristic function, 1 when x\in [0,L] and 0 otherwise.
This is a periodic potential. L is some constant. Is a solution
<br /> \psi(x) = \chi_{[0,L]}(x)\;\sin\big(\frac{\pi x}{L}\big)<br />
of the Schrödinger's equation
<br /> \Big(-\frac{\hbar^2}{2m}\partial_x^2 + V(x)\Big)\psi(x) = E\psi(x)<br />
a counter example to the Bloch's theorem?
\chi_{[0,L]} is a characteristic function, 1 when x\in [0,L] and 0 otherwise.