Neutrino Oscillation Survival Probability

Dahaka14
Messages
73
Reaction score
0

Homework Statement


I'm lost at how to derive the probability of a neutrino species surviving an oscillation. After performing calculations, I can't seem to get it into the nice tidy form
1-\sin^{2}2\theta\sin^{2}\left(\frac{\Delta m^{2}t}{4p}\right)

Homework Equations


Whatev...
|\langle\nu_{e}|\psi(t)\rangle|^{2}
E_{i}=\sqrt{p^{2}+m_{i}^{2}}\approx p+\frac{m_{i}^{2}}{2p},~\text{where}~p\gg m
\text{and}~\Delta m^{2}=m_{2}^{2}-m_{1}^{2}

The Attempt at a Solution


\begin{align*}<br /> P_{e\rightarrow\nu_{e}}=\langle\nu_{e}|\psi(t)\rangle&amp;=\langle\nu_{e}|\nu_{e}\rangle e^{-iEt/\hbar}=\left|<br /> \left(<br /> \begin{array}{ccc}<br /> \cos\theta &amp; \sin\theta<br /> \end{array} \right)<br /> \left(<br /> \begin{array}{ccc}<br /> \cos\theta e^{-iE_{1}t/\hbar} \\<br /> \sin\theta e^{-iE_{2}t/\hbar}<br /> \end{array} \right)<br /> \right|^{2} \\<br /> &amp;=|\cos^{2}\theta e^{-iE_{1}t/\hbar}+\sin^{2}\theta e^{-iE_{2}t/\hbar}|^{2} \\<br /> &amp;=|e^{-iE_{1}t/\hbar}(\cos^{2}\theta+\sin^{2}\theta e^{-(iE_{2}-E_{1})t/\hbar})|^{2} \\<br /> &amp;=(\cos^{2}\theta+\sin^{2}\theta e^{-i(E_{2}-E_{1})t/\hbar})(\cos^{2}\theta+\sin^{2}\theta e^{i(E_{2}-E_{1})t/\hbar}) \\<br /> &amp;=\frac{1}{2}\sin^{2}2\theta\left(\cos\frac{\Delta m^{2}t}{2p}-i\sin\frac{\Delta m^{2}t}{2p}+\cos\frac{\Delta m^{2}t}{2p}+i\sin\frac{\Delta m^{2}t}{2p}\right)+\cos^{4}\theta+\sin^{4}\theta \\<br /> &amp;=\sin^{2}2\theta\cos\frac{\Delta m^{2}t}{2p}+\cos^{4}\theta+\sin^{4}\theta \\<br /> &amp;=...? \\<br /> &amp;=1-\sin^{2}2\theta\sin^{2}\left(\frac{\Delta m^{2}t}{4p}\right)<br /> \end{align*}
Can someone help me fill in the blank? It would be best if I could do it on my own, so if possible just give me hints. If it is too explicit, then just tell me I guess. But as we all know, in order for me to truly own the idea, I should only be gently pushed toward the answer :smile:.
 
Physics news on Phys.org
Dahaka14 said:
<br /> &amp;=\frac{1}{2}\sin^{2}2\theta\left(\cos\frac{\Delta m^{2}t}{2p}-i\sin\frac{\Delta m^{2}t}{2p}+\cos\frac{\Delta m^{2}t}{2p}+i\sin\frac{\Delta m^{2}t}{2p}\right)+\cos^{4}\theta+\sin^{4}\theta<br />

Shouldn't

\frac{1}{2}\sin^{2}2\theta

be

\left( \frac{1}{2}\sin2\theta \right)^2 ?

Then, I think it works.
 
Okay, so now I have
\begin{align*}<br /> &amp;=\frac{1}{2}\sin^{2}2\theta\cos\frac{\Delta m^{2}t}{2p}+\cos^{4}\theta+\sin^{4}\theta \\<br /> &amp;=\frac{2\sin^{2}2\theta\cos\frac{\Delta m^{2}t}{2p}}{4}+\frac{3+\cos4\theta}{4}<br /> \end{align*}

I'm sorry if it might be obvious, but I can't see it. I've just looked at it for too long.
 
There could be more than one way to show this. Here's one way: what does \left( \cos^2 \theta + \sin^2 \theta \right)^2 equal?
 
Thanks a lot!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top